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1. Introduction

Social distancing has been the central policy employed in the United States to counteract the
COVID-19 epidemic. The idea is simple. The novel coronavirus is spread person to person through
respiratory droplets. Therefore, limiting social interactions via social distancing limits the spread.
Governments can influence social distancing with at least two different policies. On the one hand,
they can impose lockdowns, including mandatory curfews, business shutdowns, and “stay at home”
orders. On the other hand, they can facilitate information-based voluntary social distancing by
publishing and calling attention to local confirmed case counts and fatalities or issuing health
advisories. The critical question moving forward is: how effective are these social distancing
practices? We develop a model and exploit variation across the US states to answer this question
and provide insights into what causes differences in the effectiveness of different social distancing
measures.

We document three stylized facts that motivate our investigation of social distancing and its
impact on the spread of COVID-19. First, like Chetty et al. (2020) and Goolsbee and Syverson
(2020), we find that voluntary social distancing quantitatively matters (dramatically reducing
mobility) and needs to be explicitly modeled because official state lockdown policies cannot fully
explain the reduction in mobility. Second, changes in mobility vary greatly across states and
matter economically, as they are systematically related to unemployment. Third, differences in
mobility across states systematically differ in ways likely due to information, specifically public
disclosures of local confirmed cases and fatalities. These public disclosures matter for voluntary
social distancing since more confirmed cases increase the probability of being exposed to an
infected person when being mobile. As a result, mobility systematically declines for states with
more confirmed cases.

Based on these stylized facts, we estimate a compartmental epidemiology model (often called
SIR model) to investigate the role of social distancing and information. This empirical strategy
allows us to flexibly control for time-varying omitted variables impacting the relation of social

distancing and disease dynamics, such as asymptomatic transmission, symptom-based testing and



quarantining, and time-variation in fatality rates. Direct, reliable data on these factors is typically
not available, but all these variables will impact disease dynamics across states.! Additionally, our
structural model allows us to calibrate model parameters that are otherwise difficult to identify
directly. One such parameter that is key for understanding social distancing effectiveness is the
contagiousness of social interactions, which captures how much disease transmission declines in
response to social distancing. The contagiousness of social interactions also governs the degree of
negative health externalities from mobility and is a key parameter for policy analysis.

At the heart of our model, private citizens balance the benefits from mobility against the expected
utility loss from exposure to the virus, ignoring externalities from unwittingly spreading the virus.
They form expectations about the infection probability from mobility using official case and fatality
counts. Importantly, the model predicts that people in states with more credible information will
typically respond more strongly to information on confirmed cases and fatalities. We estimate
our model using Simulated Methods of Moments by choosing model parameters that fit the time
path of confirmed cases, fatalities, and cell-phone GPS measured mobility across states. A novel
feature of our estimation strategy is the use of ensemble learning and cross-validation, two ideas
from Machine Learning. Specifically, we re-estimate the model for different time horizons and then
use a weighted average of these estimates, to increase the robustness of out-of-sample predictions.
The ensemble weights are then chosen via cross-validation, which minimizes the out-of-sample
prediction error. Using these additional steps allows us to generate more generalizable patterns
that are less likely driven by in-sample noise and, as a result, are more likely to capture causal
regularities, similar in spirit to Lucas (1976). These additional elements from Machine Learning
increase the predictive performance and are therefore likely to make our model more useful for
policymakers seeking forecasts of how social distancing changes disease spread and fatalities.

Equipped with this framework, we obtain three main results. Our first main result is that

'Even relatively flexible reduced form methods such as synthetic cohort analysis might be problematic in this
application. Small differences across states (i.e., of the synthetic cohort) will have a disproportionate impact on model
dynamics due to the non-linearity of model dynamics. Additionally, early disease dynamics data is less likely to be
reliable due to the necessity of ramping up testing in several states.



information-based voluntary social distancing has saved three times more lives than lockdowns for
the median state. We obtain this result by comparing counterfactual infection and fatality paths with
either no voluntary social distancing or no lockdowns to the infection and fatality paths in the data.
Information-based voluntary social distancing becomes even more important after state population
adjustments, as it has saved over four times more lives per 100,000 people for the median state.
This result highlights the importance of information policies in combating COVID-19.

For our second main result, we show the existence of important cost-benefit asymmetries of
these information policies. Specifically, bad information policies do much more harm than good
information policies help. To establish this result in a quantitatively disciplined way, we compare
the number of lives saved by uniformly imposing voluntary social distancing responses of relatively
uninformed people in West Virginia, compared to relatively informed people in Massachusetts. We
find that voluntary social distancing consistent with responses from West Virginia implies over
240,000 additional fatalities. In contrast, imposing parameters from Massachusetts across all US
states only saves an additional 24,000 lives.

Our third main result compares the efficiency of state lockdown policies with information-based
voluntary social distancing. In this context, lockdown efficiency is defined as percentage mobility
lost for economic activities from a lockdown that saves the same number of lives as voluntary
social distancing. This relative lockdown efficiency is a function of contagion externalities from
mobility since stronger contagion implies that mobility leads to more infections in the short run
and more aggressive social distancing and lost mobility in the long run. Quantitatively we find that
lockdowns that save the same number of lives as voluntary social distancing would have allowed
over 24% more mobility for the median state. At the same time, our results suggest that whether
lockdowns are more efficient than information-based voluntary social distancing crucially depends
on the degree of health externalities from mobility and, therefore, on the contagiousness of social
interactions.

Our model builds on standard compartmental models of infectious diseases, also called SIR

models, see Kermack and McKendrick (1927) and Brauer et al. (2019). We are part of a growing



economics literature on COVID-19 and its implications for health and economic outcomes. First,
economics studies, such as Atkeson et al. (2020), Korolev (2020), Brzezinski et al. (2020) and
Fernandez-Villaverde and Jones (2020) have developed different structural estimation approaches
for SIR models. In contrast to these studies, we explicitly model sample selection in testing, allow
for differences in the contagiousness elasticity of social interactions, and use methodologies from
Machine Learning to improve upon Simulated Methods of Moments.

Second, this paper is part of the literature on voluntary social distancing, whether based on
rational expectations as in Eichenbaum et al. (2020a), Eichenbaum et al. (2020b), Farboodi et al.
(2020), or based on information and learning as in Brzezinski et al. (2020), Allcott et al. (2020),
Bursztyn et al. (2020), Simonov et al. (2020). To our knowledge ours is the first paper to allow for
differences in effectiveness of social distancing across states.

A third strand of the literature addresses questions of optimal policy during pandemics, such as
Acemoglu et al. (2020), Alvarez and Lippi (2020), Bethune and Korinek (2020), Chari et al. (2020),
Garriga et al. (2020), Berger et al. (2020), Hornstein (2020), Hortasu et al. (2020), and Karin et
al. (2020). We provide a novel method to evaluate the effectiveness of social distancing policies,
based on a credible structural model, accounting for many realistic features of COVID-19’s disease

dynamics.

2. Motivating Stylized Facts

As is well known, the direction of the US response to COVID-19 has primarily been left to
local governments. Despite warnings by myriad scientists and epidemiologists, and rising case
numbers following the first confirmed US case in January 2020, President Trump mostly set a
‘hands-off” role for the federal government and even declared at a campaign rally in February: “Now
2

the Democrats are politicizing the coronavirus (...) This is their new hoax.”

On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a global

ZFebruary 28, 2020 in Charleston, SC. See also: “2 months in the dark: the increasingly damning timeline of
Trump’s coronavirus response” Washington Post, April 21, 2020.



pandemic. California was the first US state to order a state-wide lockdown on March 19, 2020,
with nearly all other states following in the next 2-3 weeks. These lockdown orders varied from
mandatory (e.g., California) to voluntary (e.g., Utah) to none at all (e.g., Arkansas), with significant
heterogeneity in the application and severity of the orders at various levels of government (for
example, Utah did not have a mandatory lockdown, but Salt Lake City did). Thus the extent to
which citizens followed mandatory or voluntary social distancing safety measures is ultimately an
empirical question.

To quantitatively measure people’s response, we capture the extent of social distancing by using
cellphone-location based mobility data from Google.? The Google mobility measures provide a
daily-frequency comparison of mobility relative to the same calendar day in 2019, to control for
general seasonal patterns. Google provides this mobility data for different geographic locations and
different categories of points of interest. We focus on economically relevant categories, such as
mobility for work, grocery shopping, retail shopping (including restaurants), and transportation
(such as public transit). We exclude categories such as “parks”, since outdoor disease transmission
is less common and mobility within parks has increased in some states during COVID-19.4

Our first stylized fact is that social distancing quantitatively matters, but official state lockdown
policy cannot fully explain it. This fact suggests that individuals’ behavior needs to be explicitly
modeled to capture social distancing and the spread of COVID-19 properly. Figure 1 provides an
event-study graph of mobility for economic activities (henceforth “mobility”) for all 50 US states.
The vertical red line centers the graph around the day each state imposed its lockdown, and the
vertical-axis measures mobility relative to 2019. Each grey line is the daily relative mobility for a
different US state, with West Virginia and Massachusetts in black for comparison. Figure 1 shows
that mobility has substantially fallen in all 50 states. On average, mobility drops from above 100%,
20 days before the lockdowns, to a nadir of 60% and gradual increase to 70%, 40 days after a

state lockdown. Much of the fall in mobility, however, pre-dates the imposition of official state

3see: https://www.google.com/covid19/mobility/
4See, for example, the mobility to parks in the Google global mobility report.



lockdowns. Taken together, Figure 1 suggests mobility changed dramatically and is influenced by
factors other than official lockdown policy, see Chetty et al. (2020).

Our second stylized fact is that changes in mobility vary greatly across states to an economically
relevant extent. While all states follow a similar pattern, the differences between state responses are
noticeable in Figure 1, where the spread is 45% between states 40 days after a state-wide lockdown.
There are many potential reasons for this heterogeneous response. Two composite reasons include
the characteristics of the local outbreak, such as the number of confirmed cases and population
density, and the beliefs of the state residents, which are influenced by information from federal and
state officials as well as different news sources. These heterogeneous mobility responses, in turn,
matter for state-level unemployment, as Figure 2 shows. Mobility is, therefore, a useful proxy for
how social distancing affected economic activities.

Our third stylized fact is that the differences in mobility between states correlate strongly with
their ex-ante beliefs. To investigate differences in mobility due to differences in beliefs, we exploit
the current political climate as an observable signal of the beliefs about the virus. For example, it is
plausible that areas with a higher approval rating for President Trump may have a different belief
about the virus than other areas because of the messages the President has given.” We therefore
use net presidential approval ratings for President Trump in April as a measure of locally perceived
credibility of the COVID-19 threat. This correlation is shown in Figure 3. The horizontal axis is the
President’s net approval rating, and the vertical axis is the average relative mobility until June 2020.

Figure 3, however, cannot tell us whether these differences are driven by differences in voluntary
social distancing or the strength of local lockdown measures. To provide simple reduced-form

evidence on this question, we run the following regression, separately for each state s:

Mgt = Ws 0+ Us,1 - In Oyt + Hs2 - lnF:v,t — A+ €s.ts (D

where my; 1s mobility, InOy; is the log of confirmed case counts, InFy, the log of cumulative

5See “Trump Says Coronavirus Cure Cannot ‘Be Worse Than the Problem Itself’,” NY Times, March 23, 2020.



fatalities, A, the coefficient estimated on a time dummy that is one during the duration of state-wide
lockdowns and e is an error term. This reduced form model provides a first pass at quantifying
differences in voluntary social distancing across states in response to public information on local
case and fatality counts while controlling for state-wide lockdown measures.® It should be noted
that despite the simplifying assumptions of this reduced form model of mobility, the median R is
around 71%. Such a high in sample R? lends credence to this simple model, which explains the vast
majority of mobility variation. When we exclude the lockdown policy dummies, this average R>
falls from 71% to 46%, implying that lockdowns and voluntary social distancing seem to be jointly
important in understanding mobility responses.

We visualize equation (1) in Figures 4 and 5 with log of confirmed cases on the horizontal axis
and mobility on the vertical axis. We display the variation across time within Massachusetts and
West Virginia in Figure 4. Both states experience lower mobility as log confirmed cases increases,
but Massachusetts is more responsive (given by a steeper slope ;) and has a higher mobility in
the absence of log confirmed cases (given by higher vertical-intercept ). We display variation
across states in Figure 5, where we use each state’s average log confirmed cases and mobility. We
also add a linear fit trend line which represents the average across states, and has negative slope
suggesting that the negative relation holds both across states and within states over time. The trend
line provides the average responsiveness and states above the trend line are less responsive than
average (e.g., Wyoming and West Virginia) and states below the trend line are more responsive (e.g.,
Massachusetts and Vermont).

Equation (1) naturally separates out the initial mobility response (L,0) and the mobility responses
to published local confirmed case counts and fatalities (L1, ts2). Figures 6, 7, and 8 show that
the mobility responsiveness to confirmed cases (—u) systematically differs across states. The
responsiveness decreases with the President’s net approval rating and increases with education

attainment. Further, and perhaps surprisingly, the responsiveness is negatively correlated with

Note that while we do not control directly for county or city level lockdown measures, their timing will be accounted
for, if not their severity, if they are concomitant with state-wide lockdowns.



mobility in the absence of reported cases, Figure 8. A potential reason that states end up with
high responsiveness and high initial mobility is that people who trust the reported cases are able
to have both high mobility when cases are low and low mobility when cases are high. Similarly,
this suggests that a lack of trust in the reported cases could lead to initial and average mobility
because they precautionarily restrict mobility. These figures suggest that to understand voluntary
social distancing, we must understand why initial mobility (L) and the response of mobility to
information (u;) are systematically related.

This reduced form evidence motivates two questions that can only be addressed by a structural
model. First, what is driving the patterns of mobility responses Lo Vs. U 1, s 2, and what do they
tell us about voluntary social distancing? Second, what are the quantitative implications of the
reduced form evidence for the effectiveness of state lockdowns vs. voluntary social distancing in

combating COVID-197?

3. Theory and Empirical Approach

3.1. Model

3.1.1. Basic structure

Our starting point is the “compartmental” disease model as in Kermack and McKendrick (1927),
with recent extensions allowing for social distancing, see Gros et al. (2020), Fernandez-Villaverde
and Jones (2020), and Berger et al. (2020). The total population can be compartmentalized according
to

Ss+E+L+R+FE+C =N, (2)
with the following groups in temporal order of the disease progression
e S;: Susceptible
e FE;: Exposed to the virus but not yet infected and not yet infectious

e /;: Infected and infectious, i.e. possibly displaying symptoms and spreading the virus



e R;: Resolving: fully symptomatic and moving towards recovery or death
e F;: Fatalities
e (;: ReCovered

We include three additional compartments to the basic model, which only includes susceptible,
infected, and removed, to match the COVID-19 setting. First, we include the exposed compartment
that designates people exposed to the virus, and that will eventually get sick but are not yet showing
symptoms. This compartment is consistent with evidence on the incubation of the virus during the
first week of exposure and allows us to capture one of the benefits of proactive testing. Namely,
random testing or contact tracing can potentially find exposed people and quarantine them before
they can further spread the virus.

Second, following Fernandez-Villaverde and Jones (2020), we add the resolving, fatality, and
recovered compartments to capture latent demand for hospital capacity and fatality counts due
to COVID-19. The recovered compartment can later also be used to flow back into the pool of

susceptible persons if an immunity to COVID-19 turns out to be only temporary.

3.1.2. Asymptomatic transmission

An important mechanism for the spread of COVID-19 is the possibility that asymptomatic
people are still infected and contagious. For instance, evidence from the COVID-19 outbreak on the
Diamond Princess cruise ship suggests that around 18% of infected cases were asymptomatic, see
Mizumoto et al. (2020). The possibility of asymptomatic exposure affects disease dynamics in at
least two ways. First, asymptomatic infectious people worsen contagion and accelerate the spread
of the virus. Second, people infected but never display any symptoms will also never face the risk of
dying but will contribute to herd immunity. Additionally, we are very aware that the evidence from
the Diamond Princess suffers from sample selection in terms of age and other demographics. For
example, Russell et al. (2020) document that almost 60% of passengers on the Diamond Princess
were older than 60. Therefore, instead of calibrating this parameter, we directly model asymptomatic

infected people and separately estimate the probability of an infected person to not exhibit any



10

symptoms with the parameter «. As emphasized by Stock (2020), this parameter is also key in
estimating a disease model from available time-series data.

Specifically, in the model, the possibility of an asymptomatic infection enters in the stages after
the initial exposure. Asymptomatic infections are assumed to have the same transmission rate as
symptomatic infections and will have the same duration of infectious and resolving states, but will

never result in death.

3.1.3. Testing, Information States and Sample Selection

The difference between symptomatic and asymptomatic COVID-19 infections also matters
for the detection of cases through testing. Specifically, symptom-based testing cannot detect
asymptomatic infections and, therefore, unable to reduce contagion through asymptomatic people.
Furthermore, since only people in infected and resolving stages I;, R; display symptoms, symptom-
based testing cannot detect exposed cases in E;. We contrast symptom-based testing with proactive
testing, which includes random testing as well as contact-tracing. Proactive testing can detect
cases that have been exposed, as well as asymptomatic infections. We summarize the possible
information states in Figure 9. These four information states apply to the infected and resolving
stages, which we keep track of separately. In other words, for both infected and resolving cases,
there will be four sub-states, corresponding to undetected symptomatic, detected symptomatic,
detected asymptomatic, and undetected asymptomatic cases. We also assume that conditional
quarantine works perfectly for detected cases so that people who know they tested positive for
COVID-19 promptly self-quarantine.

We allow for time-varying testing rates to capture the fact that testing capabilities across states
increased over time. To fix ideas, let k € {S, P} denote either symptom-based or proactive testing
and assume that testing is initially detecting infected people at a rate 7y o and is increasing to a
final level of 7, ;. We assume that the increase in testing capability follows a smooth exponential

transition with transition rate 1y for k € {S, P}

Thr = Tk0 eXp{—Mk -1} + T - (L —exp{—"k-t}). (3)
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Our estimation strategy will then estimate the parameters Ty o, Tk 1, i for k € {S, P} separately for

each state.

3.2. Dynamic System

We formalize the ideas of asymptomatic disease transmission and sample selection through
symptom-based testing in the following dynamic system. For an overview of the notation of the
different compartments, see the flowchart in Figure 10. Following our discussion in Section 3.1.3,
we use the notation i, j, where i € {D,U} for “detected” and “undetected” cases and j € {S,A} for

“symptomatic” and “asymptomatic” cases respectively.

3.2.1. Exposure stage
Following the SIR literature, we assume random matching of infectious and susceptible people

which gives the following definitions of the change in susceptible, exposed, and exposed detected

people,
V.S
ASi1 = =Bt )
V.S
AE 1 = P [N I—G'Ez—TP,t'Et (5)
AED,t—H = 1Tp-E;—0-Ep;. (6)

In these first stages, people move from susceptible to exposed through contact with infected people,
and after an incubation period, they move into the infectious stage at rate 0. Equations (4) to (6)
formalize two points in particular. First, susceptible people can only be exposed to the virus by
undetected infectious people IV. In this sense, proactive testing and quarantining will reduce the pool
of undetected infectious people and slow the disease spread. Second, proactive testing reallocates
people from the group of undetected exposed people to detected exposed people. However, since
exposed people are by definition not symptomatic yet, symptom-based testing does not change
anything at this stage.

Additionally, a key innovation of our model is the way we allow time variation in disease



12

transmission rates f3;. Specifically, we assume that

B =Bo-m. (7)

In words, disease transmission is driven by the way randomly matched people interact with each
other, captured by the variable m;, which denotes mobility. Lower mobility m; corresponds to a
higher degree of social distancing, which will slow the disease spread. Importantly, we allow the
effectiveness of social distancing efforts to vary by location through the parameter y. A natural
benchmark for this parameter is Y = 2, which corresponds to social distancing being proportional
to the random matching technology given in equation (4). Larger values of y will capture increased
transmission, for example, through people meeting at super-spreading events such as choir practice,
weddings, concerts, etc. It should also be noted that y will play a dual role in our model. On the
one hand, higher values of y imply stronger negative health externalities from spreading the disease,
which we discuss in the context of individually optimal mobility choices below. On the other hand,
higher values of y lead to a more aggressive spread of the virus. This also implies that higher values
of ¥ make social distancing more effective in slowing down the disease’s spread. We will return to

this issue in our discussion of results.

3.2.2. Infectious stage

After an initial incubation period, people become infected and infectious. Since at this stage
exposed people can become symptomatic, we start tracking different health and information states.
as discussed in section 4.1.3. People arrive at rate ¢ in the infectious stage after going through
the post-exposure incubation period. Of these arrivals, a fraction ¢ will be asymptomatic, while
a fraction 1 — o will display symptoms. Together, this produces the equations for the change in

infectious people that are detected or undetected (denoted by a D or U superscript) and symptomatic
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or asymptomatic (denoted by an S or A superscript)

Alfi/f = oc-c-E,—y-If]’A—er-ItU’A (&)
ALY = (1—a)-0-E—y 17 —tp 1 — 15,10 9)
AIDY = o0 Ep;—y 17" —1p, - 1P (10)
AP = (1—a)-0-Ep;—v-I7° —tp 17 — 15, 1. (11)

The infectious stage also shows how testing and quarantining impact disease spread. Since people
can now display symptoms, both proactive and symptom-based testing will reallocate people from
being undetected to detected cases. Detection of cases here matters, since detected cases will
be quarantined and therefore not contribute to the spread of the disease in equation (4), since
IV = I,U A —|—IIU’S. However, it should be noted that even here, proactive and symptom-based
testing differ. Symptom-based testing only detects cases in the fraction 1 — & of the infectious
population that actually displays symptoms, so reallocates from equation (9) to equation (11). In
contrast, proactive testing additionally reallocates cases from undetected asymptomatic to detected

asymptomatic cases, i.e. from equation (8) to equation (10).

3.2.3. Resolving stage
In this penultimate stage, people stop being infectious at rate y and start transitioning into the
final stages at rate 8. As before, we need to keep track of four state variables associated with the

differences in case detection and case symptoms.

AR = y1’*—0.-RV —1p, RV (12)
ARV = y17°—0-R' —tp RS — 15, RV (13)
ARPY = v 1P? —0-RPM —1p, RO (14)
ARPY = v I =0 R —tp RO — s, R (15)

with R4 = RV + RPA,
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This resolving stage is important for several reasons. First, it helps us match the time-delay
from confirmed case data to fatality data by calibrating the associated transition rate 8. Second,
testing at this stage dilutes the effectiveness of proactive and symptom-based testing in uncovering
disease spread. Recall that cases uncovered in this late resolving stage actually have stopped being
infectious, so no longer spread the disease. But these cases will still be detected and therefore

contribute to the publicly disclosed case count.

3.2.4. Final stage

Arrival in the final stage results in one of two possible outcomes: recovery or death. To simplify
our analysis, we assume that both detected and undetected cases have an identical chance of dying
&:.” The basic idea behind this assumption is that irrespective of detection, people might eventually
check themselves into a hospital at some point in the resolving stage and therefore get treatment.
Death rates therefore measure fatality rates net of treatment effects at the hospital. The resulting

number of recovered cases is therefore

ACii1 = ORVA+(1-6)-0-RVS (16)

ACpss1 = OR+(1-8)-0-R>, (17)
with the number of fatalities given by
AE+1:5,~6-(R?’S+R?’S). (18)

We also allow for time-varying death rates, which capture improvements in COIVD-19 therapies
and are consistent with the divergence in the data between fatality count and confirmed case counts.

The dynamic fatality rate is given by

& = &-exp{—1s-1}+6 - (1 —exp{—n5-1}), (19)

"The model could easily be extended to incorporate differences in death rates of detected and undetected cases.
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were we impose 9; < & in our estimation.

3.2.5. Publicly Observable Information

We assume that state health officials immediately disclose detected cases to the public. For
fatality counts, we assume that all COVID-19 related deaths are correctly counted, irrespective of
whether these were actually detected cases or not. This is consistent with the practice of adding
“probable COVID-19 deaths” to the confirmed COVID-19 fatalities. The number of confirmed
COVID-19 cases, in contrast, will depend on the state-specific testing regime. For example, suppose
a state only uses symptom-based testing, as was widely the case especially in the early stages of

COVID-19. Then the observable confirmed case count is given by
0, =175 +RPS, (20)

With symptom-based testing, only infectious and resolving people with symptoms can actually be
detected and therefore part of the observable confirmed case counts. In contrast, proactive testing

and contact tracing imply the following confirmed case count:
0, =1"° +RP® + Ep, +IP* + RP. (21)

In addition to detecting cases in the pool of symptomatic people, proactive testing enables detection
in the groups of exposed and asymptomatic infectious as well as resolving cases.

In the data, observed confirmed case counts will be a function of the mix of symptom-based
and proactive testing and will vary over time, which is why we will estimate the associated testing
capability parameters, as discussed in section 4.1.3. These public disclosures will then feedback

into disease transmission through the voluntary social distancing decisions of individuals.

3.2.6. Voluntary Social Distancing, based on Public Information Disclosures
Our model of voluntary social distancing builds on the framework by Allcott et al. (2020) for

mobility choices in the face of risky COVID-19 infection. We analyze mobility choices from the
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perspective of a representative person, who thinks that they are uninfected. Let m;, € [0, 1] denote
mobility-based economic activities, such as going out to work, grocery shopping, visiting restaurants
and bars, etc. Mobility provides a direct flow utility of u(m;). In choosing to what extend to involve
in mobility-based economic activities, people consider two possible health states S and E. If they
stay susceptible, then the continuation value is given by V (S), while becoming exposed to the virus
and therefore infected and ultimately the possibility of death is captured in the value function V(E),
with V(E) < V(S). We assume that people perceive the probability of being exposed to the virus
as a simple linear function in their mobility choices b; - m;, where b, is the perceived probability
of being exposed to the virus per unit of mobility. The optimal mobility choice then obeys the

following Bellman equation
V(S) =max u(m)+¢-[br-m;-V(E)+(1—b;-m;)-V(S)]. (22)

where ¢ denotes a discount factor. The implied first order condition for the mobility choice is
therefore

W' (m) =by-¢-[V(S)—V(E)]. (23)

In other words, people optimally weight the marginal benefit of mobility-based economic activities
against the possible continuation value loss from becoming infected. We note that since our model
will be estimated on a daily frequency, the continuation values V(S) and V(E) are unlikely to be
time-varying. Since mobility is a static policy variable, the key to determining the extent of mobility
is the expected infection probability ;.

Under the random matching in equation (4) and non-linear social interaction in equation (7),

rational expectations imply that

P eyt (1
by = Bo- (m}) : (24)

1

Note that since people take this infection probability b; and its component (n_fzt) vl as given when
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optimizing the Bellman equation (22), they ignore any externality they impose on other people
by increasing their mobility. Importantly, the strength of this health externality is governed by
the contagiousness of social interactions Y. As social interactions become more contagious (e.g.,
people attend more super-spreading events, such as choir practice, concerts, weddings, etc.) y
increases, implying more negative health externalities from the spread of COVID-19.

A natural solution concept for infection probability b, might be Rational Expectations or Nash
equilibrium, under which people correctly forecast b;. However, this would require people to
correctly forecast the unobservable variables (n'q{ ) Y1 and <%> There are several reasons why
this solution concept might be considered problematic for modeling expectation formation during a
pandemic. First, the non-stationarity of disease dynamics in the short run—especially in the daily
frequency data we consider—is likely to prevent the convergence of simpler expectations, such as
adaptive expectations to rational expectations as in Muth (1961). Second, Henry (2002) argues that
even in deterministic non-stationary environments, simple extrapolation forecasts can outperform
unbiased rational expectations based on the true model and might therefore be preferred. Third,
empirical evidence by Coibion et al. (2020) has demonstrated that households were not strongly
responsive to forward-looking policy information by the Fed. Forth, we believe that the Lucas
Critique (Lucas, 1976), which states that current policy changes impact expectations of future policy
changes, so that expectations parameters are not policy-invariant does not apply in our context, in
which government policy does not shift between policy rules. We follow Kocherlakota (2019), who
showed that even if agents exhibit rational expectations, individual one-off policy measures will not
impact private expectations of government policy if the government has access to private information.
In the presence of such private information, agents will interpret one-off policy changes as indicative
of private information shocks, thereby rendering the mechanism underlying the Lucas Critique
ineffective. Importantly, governments are very likely to have access to such private information
during a pandemic; for example, forecasts of disease spread prepared by government officials.
Kocherlakota’s analysis also shows that policy evaluation using past data correctly measures policy

effectiveness in these circumstances.
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We model expectations formation via simple Bayesian updating. We assume every morning,
people wake up and form an expectation on infection probability when being mobile that day, based
on their prior and newspaper reports of confirmed cases and fatalities. Focusing on Inb; as the log
expected infection probability belief at time ¢, we assume that the prior is normally distributed,

N (In(bo), 07 ). People also consider the combined signal
X[:V1'1n0[—v2'1nE, (25)

with vi > 0 and v, > 0. In other words, people use the observed count of confirmed COVID-19
cases Oy, and the total cumulative fatality count F; to predict the probability of getting exposed to
the virus per unit of mobility. This shows that the perceived infection probability will increase in
the number of observed cases O, as people predict that the likelihood of running into an infected
person is higher with higher case counts. At the same time, people believe that an increase in the
total fatality count will tend to decrease the infection probability as it is not possible to run into
dead people. We assume that the combined signal X; perceived to be normally distributed with
N (ln(b*)7 (782). Note that In(»*) could be the correct log average infection rate in the case of rational
expectations, but we do not take a stand on it here. More importantly, 62 captures the variance
of noise in the signal. The higher this noise, the less credible people think the publicly provided
information is.

The posterior can therefore be written as

Inb; = pe-Inbg+ (1 —pe) - v -InO; — (1 — pe) - vo-InF,, (26)

2
where p; = G;T%g € (0,1) is the belief on the importance of noise in the data. Higher values of pe

therefore increase the weight in the prior belief of the infection rate, while weight on the publicly
published data is reduced. On the other hand, if public information is very credible, pe will be very
low, therefore placing less weight on the prior infection probability and making expectations more

responsive to published case and fatality counts.
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For our empirical implementation, we combine this log-linear expectation formation in equa-

tion (26) with exponential utility for the flow utility from mobility:
u(my) = ug —exp{—x-m} (27)

with k¥ > 0. As a result, the first-order condition in equation (23) combined with equations (27) and

(26) can be rewritten to our empirical equation:
m; = P+ Uy - InO; + Uy - InF, — X (28)

the constants are given by

o Ly = Pe- (—%) —+-In <% V(S)-V(E )]) , which captures unconditional mobility, irre-
spective of public information. Note that 3—2‘3 = Pe - <_1<-+70> < 0, so higher prior beliefs on

infection b reduce mobility.
o Uy =—(1—pg)- V—Kl < 0 is the mobility response to confirmed case counts

o = (1—p¢)- V—KZ > 0 is the mobility response to cumulative fatality counts.

It is worth noting that the optimal mobility equation (28) naturally generates mean-reversion in
voluntary social distancing over time, given the disease dynamics of our model. The reason for
this mean reversion is that in the beginning stages of an infection, the number of confirmed cases
will strongly increase, while not many people will have died from COVID-19. Therefore, early on,
voluntary social distancing will depress mobility significantly. However, as the number of fatalities
grows, people update their perceived infection risk downward, according to equation (26). This
effect partially offsets increased social distancing from growing confirmed case numbers.
Equation (28) also helps us to understand the reduced form regression of equation (1) better
and the associated results in Figure 8. Expectation formation parameters pg, bg, Vi, and Vv, enter
the mobility coefficients Ly, l1, and u,. If preference parameters k and ¢ as well as expectation

coefficients v; and v, are similar across states, average mobility Ly and mobility responses to
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new information | and p, are directly informative about how much people trust the quality of
public disclosures in their states, or p. Low information quality (or high p,) will translate into
low responsiveness (1 and {»), while the opposite is true for high information quality (low pg).
However, to match the pattern in Figure 8, that states with very negative (; also have high o, it
must be true that the prior on infection probability b is lower in states with high information quality.
This might capture the idea people in states with low information quality assume such low-quality
information is a signal that news is bad, i.e., infection probabilities are high.

We also add the term A, to model the effects of (temporary) lockdown measures, imposed on the
state level. Lockdown policies are captured by the following time-varying variable as in Atkeson
(2020):

A =2 -exp{—nL-t}+A - (1 —exp{-nL-1}), (29)

where we estimate the parameters A; > A and 7, from the data.

3.3. Structural Estimation

We proceed in three steps to estimate our model. In the first step, we estimate equation (28)
directly using data on mobility, observed case counts, cumulative fatalities, and state-level lockdowns
to estimate the parameters (Lo, Ui, Mo, and A;) separately for each state. In our second step, we
calibrate three “clinical” parameters that capture important stages of disease progression and for
which we believe there is convincing evidence from the micro-data. We start by setting the initial
virality Ry of COVID-19 to 6 based on evidence by Sanche et al. (2020) on the spread of COVID-19
during the early phases of the outbreak in Wuhan, China. However, it is important to note that
the model will estimate time variation in the virality R;, taking endogenous social distancing into

account,

R =P )1/ (30)

Virality at time ¢ is the product of f3;, which is a function of mobility m, and the duration of cases
remaining infectious 1/, which will also be estimated. The second calibrated parameter is the

average incubation period, which we set to 5 days, so that ¢ = 1/5. This parameter value is
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consistent with the evidence in Lauer et al. (2020). The third calibrated parameter is the average
resolution time, which we set to 12 days, so that & = 1/12, based on evidence from W.H.O. (2020).

In our third step, we estimate the remaining parameters using Simulated Methods of Moments,
see Gouriéroux and Monfort (1997). Specifically, we choose six testing parameters (Tpo, Tp1,
Np, Ts,0, Ts.1, and 1Ng), five initial values of undetected cases (E1, I{J’S, IlU ’A, RIIJ’S, and R?’S) and
six parameters related to disease transmission and fatalities (¢, &, 01, Ng, ¥, and ¥). These 17

parameters are chosen to minimize
Tin i i
SSE =Y (0,— 0"+ Y (F—FM?*+ Y (m —m}")?, (31)
=1

where Of’l , F,M , and mﬁ” are model-generated time paths while O;, F;, and m, are the corresponding
data time paths. As equation (31) shows, we match three time paths: observed confirmed cases,
cumulative fatalities, and mobility.

Our estimation is also subject to three inequality constraints:

0 < Tp] (32)
Tso0 < Ts,1 (33)
o > 6 (34)

and 17 variable bounds, ensuring that transition rates remain € (0, 1) and initial numbers of unde-
tected infections are non-negative. We also utilize additional micro-evidence to bound parameter
values for several key parameters. First, we impose an upper bound of death rates for symptomatic
people of 15%, consistent with the case fatality rate of 15%, which prevailed in Italy at the height
of the COVID-19 crisis in that country. Italy’s case fatality ratio in turn is the highest currently
reported case fatality ratio in the world. Second, we bound the probability of being asymptomatic,
conditional on infection, to values a € [0.05,0.8]. The lower bound corresponds to the fraction of
patients in Arons et al. (2020) who never developed symptoms, while the upper bound corresponds

to the upper bound of estimates for & in randomized testing data in Seegert et al. (2020). Most
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of the existing estimates for @ comfortably fall within these bounds, such as evidence from the
Diamond Princess at o« = 0.18 in Mizumoto et al. (2020) and & = 0.45 in Oran and Topol (2020).

We tested the identification of this Simulated Method of Moments estimator in two ways. First,
we simulated artificial time paths for a given set of parameters and made sure that the estimation
procedure converges to the correct values from random starting points.® Second, we cross-checked
the parameter estimates with the intuitive co-movement in the data. For example, consider several
key parameters: y, 7, and «. First, contagiousness of social interactions V is in part pinned down
by the co-movement between mobility m; and confirmed cases O; because y directly influences
how strongly any social distancing translates into the new infections. Second, the rate y determines
how long people stay infectious after the virus has incubated and this parameter estimate is driven
by the co-movement of confirmed cases and fatalities. In particular, higher values of y decelerates
disease transmission, as it reduces the pool of infected people. At the same time, higher values of y
will lead to a faster transition of cases from infectious to resolving and therefore accelerate growth
in fatalities. Finally, the probability of being asymptomatic conditional on being infected (o) is
strongly driven by the shape of the number of confirmed cases. Higher values of & increase disease
transmission through asymptomatic people while also strengthening herd immunity since a higher
number of asymptomatically infected people recover without symptoms, which in turn reduces the
pool of susceptible people. Furthermore, a higher value of o tends to decelerate fatality counts, as
asymptomatic cases all eventually recover. In other words, the shape of the time path of confirmed
cases, the timing of the peak in confirmed cases, and the co-movement of confirmed cases with
fatalities will be important for pinning down «.

In our fourth step, we improve our model’s forecast properties by using techniques from Machine
Learning. This step is important because complex and non-linear models tend to overfit the data
and perform poorly in terms of out-of-sample predictions, see Hastie et al. (2020). In turn, poor
out-of-sample predictions indicate that model parameters do not fit robust, generalizable patterns but

instead idiosyncratic noise in the data, a point that is reminiscent of Lucas (1976). To improve model

8Results from these simulations are available upon request.
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generality, we use two key ideas from Machine Learning, ensemble learning and cross-validation.
Combining different models into an averaged ensemble forecasts, stabilizes the predictions, and
tends to reduce the variance of the prediction error. Additionally, cross-validation allows us to
compute optimal ensemble weights to maximize out of sample accuracy.

For cross-validation, we reserve the last week days of data as our out-of-sample prediction
window. To estimate different models, we re-estimate the model by removing one day at a time,
going back 28 days, and use these shortened training samples as estimation data. We then use
forecasts from these 28 models to predict the time path of confirmed cases and fatalities in the 7
days after the end of the last training sample. The model weights are then chosen to minimize the

following out-of-sample prediction error

L
SSPE =

2
I , L 1 .
01,1 — Z Wi O(TZH + Z Py — Z Wi FT(;)H : (35)
i=1 I=1 '

=1 i=1

4. Results

4.1. Case studies of State Estimation: Massachusetts and West Virginia

We begin with two specific estimates of states to explain more precisely how our empirical
approach works in practice. We selected the two states based primarily on how strong the voluntary
social distancing responses in response to confirmed cases were: people in West Virginia had the
lowest estimated absolute value of t;, while Massachusetts had one of the highest. These two states

will also prominently feature in our analysis of different counterfactual information policies below.

4.1.1. State fundamentals

West Virginia is one of the poorest states and smallest states in the US, and relatedly is not
very densely populated.” Specifically, West Virginia’s population density is around 77 persons per
square mile with its largest city, Charleston, counting 45,000 residents, or about 2.5% of the total

population. Some of these fundamentals, such as lower population count and less density, make

The summary statistics in this section are mostly based on statistics from the US Census Bureau for 2019.
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West Virginia unlikely to strongly suffer from COVID-19 in terms of health outcomes. On the
other hand, voluntary social distancing may be low in West Virginia because it might have a lower
belief about the severity of COVID-19; West Virginia has a net approval for President Trump of
about +20% and only 20% of the population over 25 years of age has a BA degree. COVID-19 is a
potentially serious health threat for West Virginians because 20% of its population is over 65.

In contrast, Massachusetts is one of the wealthiest, largest, and most densely populated states and
is therefore at a higher risk from an aggressively spreading contagious disease, such as COVID-19.
Massachusetts is home to about 6.8 million people, around 10% of whom live in its largest city,
Boston. It is the 29" most densely populated state with approximately 839 persons per square mile.
These factors likely increase the potential threat of COVID-19 for the citizens of Massachusetts.
On the other hand, voluntary social distancing may be high in Massachusetts because it has the
highest fraction of college-educated persons, with 43% of the population over 25 holding a BA
degree. Additionally, Trump’s presidential approval rating is around -28%. Based on the descriptive

evidence, we should expect high social distancing levels and low mobility in Massachusetts.

4.1.2. Progression of COVID and State government responses

COVID-19 spread to Massachusetts and West Virginia at very different times, while state actions
were taken around the same time. Massachusetts declared its first confirmed case of COVID-19 on
March 2, 2020, it took another two weeks until West Virginia identified its first COVID-19 case on
March 17, 2020. West Virginia was the last state to announce the confirmation of a COVID case
publicly. While two weeks seems like a small-time difference, it should be noted that both disease
spread and our empirical analysis are conducted at a daily frequency, which implied a substantial
difference in timing. Though the arrival of COVID-19 in both states was different, both states
imposed state-wide lockdowns on March 24, 2020. This relative delay of the state response in West
Virginia indicates a more hesitant approach to lockdowns. It is also mirrored in the fact that West
Virginia’s reopening started on May 4, approximately two weeks before partial reopening started in
Massachusetts.

With these differences in mind, our mobility measures from Section 2, can help us understand
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how quantitatively different social distancing was in these two states. Overall, average mobility
declined by 31% relative to 2019 in Massachusetts as compared to an 11% average mobility decline
in West Virginia. These raw differences could be driven by differences in state lockdown policies as
compared to voluntary social distancing. Therefore, using our estimates from equation (1), we can
calculate the average effectiveness of lockdowns on mobility, or the term A;. This term turns out
to be remarkably similar between the two states. While in place in Massachusetts, our estimates
suggest that the lockdown reduced mobility by 12% on each day relative to 2019. In comparison,
the West Virginia lockdown reduced mobility by 13% on each day. These effects of lockdowns on
mobility each day are close to the median effect of 14% across states.'? However, the lockdown
was in place in Massachusetts for about two weeks longer. This longer duration might at least, in
part, contribute to a higher overall effect of lockdowns on the spread of the virus.

We now move to the comparison of the raw data in terms of health outcomes. For comparison

purposes, we report population-adjusted cumulative fatalities “per 100,000”, which is calculated as

Number of fatalities
State population

% 100,000. In terms of raw fatality outcomes, Massachusetts seems to have
performed much worse with 188 deaths per 100,000, while West Virginia has performed relatively
well with five deaths per 100,000 until the end of June. Of course, these outcomes by themselves
are likely to be driven by the fact that Massachusetts is more densely populated, as discussed in
Section 4.1.1. Therefore, to evaluate the effectiveness of lockdown policies and voluntary social

distancing, we now move to model estimation.

4.1.3. Massachusetts and West Virginia: Model Estimates and Social Distancing Effectiveness
The panels in Figure 11 show model estimates for West Virginia and Massachusetts. The two
vertical lines make different dates for including of the training sample. Between the first and the
second vertical line, one day is added at a time to the estimation sample and the model is re-estimated
on the extended training sample. Past the second line are the observations that constitute the test

sample for cross-validation of the ensemble model (see equation (35)). The various dashed lines

10The 95" percentile of the state lockdown effects are 20% mobility reduction each day.
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then show predictions for the first five and the last five models. Our optimal ensemble model
estimates are displayed as a solid blue line. For comparison purposes, we also present a naive
ensemble in red dashed lines. As the blue lines show, our ensemble estimator successfully predicts
the rising number of cases and cumulative fatalities. These figures provide examples for the optimal
ensemble, successfully estimating generalizable patterns that go beyond what even a naive ensemble
would find. However, note that the model performs somewhat worse in terms of fitting mobility
changes, though the R-squared for both states is still around 70-75%.

Once we estimated the optimal ensemble model for both West Virginia and Massachusetts, we
turn to the calculation of the causal effects of state lockdowns and voluntary social distancing. The
panels in Figure 12 show the qualitative results. In these panels, the blue lines correspond to the
optimal ensemble model estimates from Figure 11. We contrast this estimated and predicted path
with two counterfactuals from the model. First, the grey dashed line is the infection, fatality, and
mobility time path without state lockdowns but with voluntary social distancing. Second, the black
dotted line displays the same time paths for a counterfactual without voluntary social distancing but
with state lockdowns. As the counterfactual panels show, in both West Virginia and Massachusetts,
the effect of voluntary social distancing is more important than the impact of state lockdowns: in
general, the dotted lines are above the dashed grey lines.

To put these plots in perspective, consider the results in Table 1, which reports results per
100,000. The table shows that state lockdowns were far more effective in Massachusetts than
in West Virginia in saving lives. Importantly, even if one adjusts for the fact that the lockdown
in Massachusetts had a longer duration than in West Virginia, the state lockdown effectiveness
is still twice as high in Massachusetts than in West Virginia. At first, this might seem puzzling,
since our estimates of A, or the effect of lockdowns on mobility were quite similar between the
two states. However, recall from equation (7) that how strongly mobility changes depend on the
contagiousness of social interactions Y. And these parameters differ substantially in our model
estimates. For Massachusetts, we estimate an averaged value of y = 2.5 across models used in the

optimal ensemble. This parameter suggests higher effectiveness of social distancing on reducing
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disease transmission than in the random matching benchmark of y = 2. In contrast, y = 1.55 for
West Virginia suggests lower effectiveness of social distancing measures there.

These contagiousness differences also magnify already substantial differences in voluntary
social distancing. Table 1 shows that voluntary social distancing was more than twice as effective in

saving lives in Massachusetts as in West Virginia.

4.2. Key Parameter Estimates for All States

We now move to a more general discussion of our estimation results across states. In this
section, we focus on a handful of parameters that prominently featured in the policy discussions
around COVID-19. However, before turning to the results, we want to point out an important caveat.
We will present “ensemble averages” of parameters, defined as weighted values of parameters for
all models in the optimal ensemble, where weights reflect the optimal ensemble weight. These
ensemble averages are meant as an easy way to indicate what models estimate. However, it is
unlikely that these estimates themselves would exactly give the ensemble models’ estimated paths
since all these models are highly non-linear. For the ensemble-averaged parameters, we will also
mainly focus on the median values, but the reader should be aware that extreme values that are
estimated quantitatively matter in the non-linear models considered here.

Turning to Table 2, we point out that average virality R, differs greatly from the calibrated initial
virality estimate of six. These differences are, of course, driven by endogenous social distancing.
Importantly, the median ensemble-average value is 3.86, which is far lower than six. On the other
hand, it is also worth noting that none of our estimates fall below one, which means that no state
has managed to push virality below the net infection growth threshold persistently.

Our model also provides estimates for the fatality rates due to COVID-19 in Table 3. This death
rate should be interpreted as the death rate for symptomatic people since only symptomatic people
can die in our model. The model estimates that in the median state, death rates for symptomatic
people were around 10.4%. However, death rates have been progressively falling through the
estimation period and therefore end up at 0.003% for the median state. The model also estimates

that the transition rate between these two death rates for symptomatic people is about 27 days,
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which implies an impressive improvement in learning to treat the disease.

The model estimates the probability of being asymptomatic, conditional on being infected to be
around 12% for the median state. That is only a bit lower than the 18% estimated by Mizumoto et
al. (2020) for the Diamond Princess. However, it should be noted that estimates for the o parameter
vary from our lower bound of 5% to around 60%, which is still comfortably below our upper bound
of 80%.

Our estimates of o and 6 can also be combined to illustrate the infection fatality rate, i.e. the
fraction of infectious people who eventually die. This is calculated as § - (1 — &) and is 9.15% at
the beginning of the COVID-19 crisis and falls below 0.003% over time. Therefore, our estimates
suggest that the overall chances of dying, even when contracting the disease have sharply fallen

over time. Even the 90" percentile of fatality rates is 0.31%.

4.3. The Importance of Information Policy

Table 5 presents results from estimating the effectiveness of different types of social distancing
for all states, using the same methodology as in Section 4.1.3. It shows that in terms of total
numbers of lives saved, voluntary social distancing was almost three times more effective than state
lockdowns for the median state. Effectiveness even increases if we consider population-adjusted
lives saved, which implies that voluntary social distancing is 4.5 times more effective. These results
suggest that information policy and health advisories, which focus public attention on confirmed
cases and fatalities, can be an important tool for policymakers. Indeed, beyond effectiveness in
saving lives, information policy tools are attractive because they facilitate private initiative in
implementing social distancing. Of course, a major drawback of this argument is that such private
initiative can be insufficient in the presence of very strong health externalities, a point to which we
return below.

Several factors drive the result that information-based voluntary social distancing has been
more effective in saving lives than state lockdown. One of the key factors is that voluntary social
distancing tended to sharply depress mobility early on, consistent with the evidence by Chetty et

al. (2020), Goolsbee and Syverson (2020), and Figure 1. In this context, it should be noted that
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the earlier social distancing is, the more effective it is in reducing the spread of the disease. At the
same time, state lockdowns tended to be weeks after the first confirmed cases. Furthermore, most
lockdowns in Spring 2020 tend to be limited in their duration, while information-based voluntary
social distancing continues beyond the end of lockdowns and likely encompasses a broader range of
behaviors, such as wearing a mask, washing hands, or avoiding specific risky social situations, than
could be effectively mandated by government

Beyond the characteristics of lockdown policies, it is likely that state fundamentals, such as
population density, influence the effectiveness of voluntary social distancing. Figure 13 investigates
this conjecture, by showing the correlations of voluntary social distancing effectiveness and popula-
tion density, controlling for population. It shows that states with higher density tend to save more
lives through information-based voluntary social distancing. This relationship is intuitive, as staying
at home prevents people from spreading COVID-19 more in dense cities than rural areas. However,
it should be noted that this relationship emerges from our model estimates despite the fact that we
did not use any data on population density to estimate the model. It therefore serves as an additional
“out-of-sample” prediction that confirms that our model produces generalizable regularities.

Figure 14 investigates the relationship between the average of the time-varying virality R; and
the contagiousness of social interactions y, following our discussion in Section 4.1.3. Interestingly,
we find a non-monotonic relation between these two variables. For low values of y, increases in ¥
reduce average virality. However, past a value of 3, higher contagiousness of social interactions y
is correlated with higher virality. This pattern makes sense if we consider average virality R; to be
the balance of two opposing forces, as R; = M In states with relatively low values of y, every
reduction in mobility m; implies that infection rates can be more effectively reduced. However,

as Y increases beyond 3, the effect that even little amounts of mobility m;, can quickly spread the

disease dominates. This explains why for very high values of y, virality is, on average, very high.

4.4. Information Policy Counterfactuals

The results in the previous section raise the question of how much changes in information

policy—which influence the parameters y, i, and pgp,—matter for saving lives during COVID-
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19. To discipline this quantitative exercise, we return to the two states of West Virginia and
Massachusetts. Our estimates of coefficients i, i;, and u, are consistent with the view that
information quality in West Virginia is poor, while people have a higher prior on the base risk of
infection. In contrast, the uo, iy, and U, estimates for Massachusetts suggest that people believe
information quality to be high, while their priors about base infection rates are low.

In order to contrast differences in information quality, expectation formation, and voluntary
social distancing, we impose either West Virginia’s or Massachusetts’ mobility coefficients L,
U1, and U on all states. Then we recalculate the effectiveness of social distancing by taking
the difference between lives saved by voluntary social distancing with the alternative uniform
parameters Ug, U1, and Uy as opposed to our baseline estimates with heterogeneous information
quality.

We report our results in Table 6. The entries capture the sum of lives saved across all states. As
the first entry shows, more than 246,000 additional people would have died if people in all states
followed the same expectation formation process as people in West Virginia. This number is a
substantial counterfactual increase in fatalities, compared to around 100,000 deaths by the end of
June 2020. In contrast, 26,071 more lives would have been saved if everyone trusted published
case counts as much as people in Massachusetts. Imposing uniform mobility responses underlines
the role played by different coefficients. Recall from Figure 8 that Massachusetts had a very high
value for Ly but also very high absolute values for p; and . While the higher value of u; tends to
increase the number of lives saved across states, the higher value of L tends to reduce it. Therefore,
the worst combination is Massachusetts’s high unconditional mobility tiy, which might reflect more
optimism about the base infection risk with West Virginia’s weak responsiveness to published case
and fatality counts y; and up. This combination would have implied an additional 1.6 million
fatalities. In contrast, the best combination of ug, ui, and y, would have saved an additional
116,589 people.

An important finding of Table 6 is that there exists significant asymmetry in the importance

of bad and good information policies: bad information policies harm much more than good
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information policies help. Figure 15 illustrates what drives this asymmetry. Specifically, it displays
the distribution of lives saved for the uniform West Virginia expectations in red, while the uniform
Massachusetts expectations are in blue. This figure shows that the additional lives lost due to
low-quality information are much more concentrated at very low values. In other words, low-quality
information disproportionately harms states that already have a bad outbreak. In contrast, the effects
of high-quality information are much more heterogeneous, harming some states while helping other

states.

4.5. Externalities and the Efficiency of Social Distancing

Our results can also be used to evaluate the relative economic costs of lockdowns as opposed to
voluntary social distancing. To accomplish this, we calculate the mobility lost if lockdowns would
have been used to save the same number of lives as voluntary social distancing. In other words, for

each state, we calculate

_lives saved by voluntary soc. dist. mobility lost due to lockdown

&=

X 36
lives saved by lockdown mobility cost through voluntary soc. dist.’ (36)

where £ measures how much more in terms of lost mobility it would have cost to save the same
number of lives through lockdowns instead of voluntary social distancing. Our baseline results
for & across states are reported in the last column in Table 5. For the median state, the answer
1s —24.2%, suggesting that lockdowns would have avoided nearly a quarter of the economic costs
associated with voluntary social distancing. However, it should be noted that there is a fair amount
of variation in the efficiency of lockdowns. Indeed, as Table 5 shows, for some states, voluntary
social distancing is far more efficient than lockdowns and implies that lockdowns would have
cost 69.36% more in terms of lost mobility to save the same number of lives as voluntary social
distancing has. As a consequence, lockdowns might be considered a targeted rather than general
policy option over information policies. However, if blanket policies are the only option, then we
find they are still economically beneficial on average.

A key factor influencing the relative efficiency of lockdowns as opposed to voluntary social
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distancing is the contagiousness of social interactions Y. Recall from equation (24) that y governs
the strength of negative health externalities from mobility. Under voluntary social distancing,
stronger externalities implied by higher y lead to more exposure and, ultimately, more infections
in the future. More infections, in turn, depress mobility via equation (28). As a result, higher
contagiousness of social interactions leads to more disease spread under voluntary social distancing,
leading to stronger social distancing. In contrast, imposing lockdowns reduces infections in the
first place, so that subsequent mobility can be higher as the number of confirmed cases is lower.
Evidence for this mechanism is presented in Figure 16. The y-axis shows measures of & in
percentage points, with lower values capturing higher efficiency of state lockdowns. The x-axis
captures the contagiousness of the social interaction parameter Y. Figure 16 shows that states with
higher estimates for y and therefore stronger health externalities exhibit higher relative efficiency

of state lockdowns compared to voluntary social distancing.

5. Conclusion

This paper has developed a new methodology to evaluate the effectiveness of social distancing
during COVID-19. To achieve this, we combine the structural estimation of an infectious disease
model with techniques from Machine Learning. Our methodology allows us to account for several
empirically relevant features of the COVID-19 pandemic, such as sample selection in reported
case data, asymptomatic contagion, and information-based voluntary social distancing. Our basic
result is that voluntary social distancing saved three times as many lives for the median state than
state-wide lockdowns. At the same time, we find that the curvature in social interactions, which
captures the importance of super-spreading events, matters for the effectiveness of social distancing
in combating contagion.

The framework developed in this paper can be used to analyze at least three additional policy-
relevant questions. First, how do different policy alternatives, such as (1) proactive testing and
quarantining, (2) increased symptom-based testing, and (3) efforts to increase public attention to

published case counts, quantitatively differ in slowing the spread of COVID-19? Second, what are
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the economic implications of these different non-pharmaceutical interventions? Our framework
already quantified the reduction in mobility-based economic activities, such as going to work and
grocery shopping, but we have not directly translated these mobility changes into unemployment or
GDP numbers (although doing so, using regularities such as Okun’s Law is straightforward, see
Brzezinski et al. (2020)). Third, are there important policy complementarities between different
non-pharmaceutical interventions? For example, more aggressive testing might increase case counts,
while governments can also influence the degree of voluntary social distancing by focusing the
public’s attention. Might a combination of these two policies disproportionately slow the spread of
the virus down? These questions can be addressed by the framework developed in this paper, and

we leave them for future research.
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Table 1: Lives saved by social distancing

West Virginia Massachusetts
State lockdown 20.5 61.4
State lockdown ! 20.5 424
(same duration)
Voluntary Social Distancing 51.8 133.7

Note: Entries display population-adjusted number lives saved (per 100,000). It is calculated as
Number of lives saved
State population
terfactual cumulative fatalities until end of June and estimated cumulative fatalities, both calculated from the

optimal ensemble model (31) and (35).

! Lockdown duration is normalized by adjusting lives saved for MA by (38 days/55 days)

x 100,000, where "Number of lives saved” is calculated as difference between coun-

Table 2: Ensemble-weighted parameters

Ro! R; TR0 TR Nr Tso  Ts, Ns

90" Perc. 6.00 6.66 0.03 030 002 002 030 0.03
75" Perc.  6.00 5.12 0.00 020 000 000 029 0.02
50" Perc.  6.00 3.86 0.00 0.09 0.00 000 020 0.01
25" Perc.  6.00 3.13 0.00 0.04 000 000 0.07 0.00
10" Perc.  6.00 2.66 0.00 0.01 0.00 0.00 002 0.00

Notes: Estimates of parameters from model (31), weighted with optimal ensemble weights (35).
1: Calibrated parameter, using Sanche et al. (2020)
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Table 3: Ensemble-weighted parameters: Virality and testing

o & 8 na o v vy 6' o?

90" Perc. 0.40 0.14  0.0031 0.18 0.58 596 041 0.083 0.2
75" Perc.  0.34 0.13 0.001 0.075 036 4.17 0.15 0.083 0.2
50" Perc. 0.32 0.104 0.000031 0.036 0.12 2.53 0.083 0.083 0.2
25" Perc.  0.31 0.034 0.0 0.025 0.051 191 0.049 0.083 0.2
10" Perc.  0.26 0.014 0.0 0.017 0.05 1.06 0.036 0.083 0.2

Notes: Estimates of parameters from model (31), weighted with optimal ensemble weights (35).
1: Calibrated parameter using Lauer et al. (2020)
2: Calibrated parameter using W.H.O. (2020)

Table 4: Ensemble-weighted parameters: Initial infections on day of first confimed case

E 7S 74 RYS R{4
90" Perc.  2722.02  891.40 330132 616508  6165.08
75" Perc. 979.46 239.09 222648 114211 114211
50" Perc. 29.36 2.08 384.51 112.56 112.56
25" Perc. 0.36 0.13 37.12 6.33 6.33
10" Perc. 0.00 0.00 2.55 0.00 0.00

Notes: Estimates of parameters from model (31), weighted with optimal ensemble weights (35).

Table 5: Estimates of social distancing effectiveness

Lockdown Voluntary Social Distancing Econ. cost equiv.
Lives saved Mobility lost Lives saved Mobility lost Mobility lost given
Pct. Total Per 100K Cum. Total  Per 100K Cum. equivalent fatality
90" 78.43 6021.87 8.26 314.86 23071.44 29.61 69.36%
75" 27.93  1824.59 6.57 139.4  7283.34 20.02 19.04%
50" 754 373.13 3.66 33.92  953.56 14.75 -24.18%
25" 2.66 60.31 1.95 5.73 222.62 9.12 -72.66%
10" 0 0 0 1.32 9.82 7.38 -89.43

Notes: First column indicates percentile of across state estimates. Estimates are based on difference between actual
fatalities or mobility and counterfactual fatalities or mobility without lockdowns (colums 2-4) or without voluntary
social distancing (columns 5-7). The last column calculates the percentage mobility loss if lockdowns are used to
save the same number of lives as voluntary social distancing in the same state percentile.
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Table 6: Lives saved by uniform mobility responses for different mobility parameters

Hi, U2

WV MA

A% —246,635 116,589
MA  -1,664,915 26,071

Notes: Number of lives saved relative to estimates mobility parameters Lo, 11, Ly, With negative numbers indicating
higher fatalities. Entries are calculated are predicted fatalities under uniform mobility parameters, based on
responses in West Virginia (WV) or Massachusetts (MA) minus fatalities under estimated current responses.
Entries are cumulative until end of June 2020.
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120%
1

West Virginia

94%
|

80%
|

Massachusetts

Relative Mobility
Spring 2020/Spring 2019 (Google)

60%
|

40% 49%

T T I T T
-40 -20 0 20 40 60
Days Before and After State-wide Lockdown

Figure 1: Voluntary social distancing before effective date of state-wide lockdown

Notes: This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response
(see: https://www.google.com/covid19/mobility/). The Google mobility measures provide a daily-frequency comparison
of mobility relative to the same calendar day in 2019, to control for general seasonal patterns. A value of 70% is
interpreted as mobility on this day in 2020 is 70% the mobility on this day in 2019. We focus on economically relevant
categories, such as mobility for work, grocery shopping, retail shopping (including restaurants), and transportation
(such as public transit) and exclude categories such as “parks,” since outdoor disease transmission is less common. The
mobility data is centered around the day a state-wide lockdown is imposed (given by the bold red line). To demonstrate
heterogeneity across states, we denote the difference in mobility 40 days after a state-wide lockdown (thin blue line,
with dashed horizontal lines that denote the range). The mobility data for two states, Massachusetts and West Virginia,
are given in black and labeled.
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Figure 2: Mobility and unemployment rates across states (April, 2020)

Notes: This figure uses cellphone-location based mobility data from Google to quantitatively measure people’s response
(see: notes for Figure 1). State unemployment data comes from the Bureau of Labor Statistics (BLS).
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Figure 3: Mobility and President’s approval rating across states

Notes: This figure uses cellphone-location based mobility data from Google to quantitatively measure
people’s response (see: notes for Figure 1) and approval ratings for the President from FiveThirtyEight
(https://github.com/fivethirtyeight/data/tree/master/trump-approval-ratings) averaged over the spring of 2020.
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Notes: The vertical axis is the state-specific estimate of the coefficient u; of log confirmed cases with mobility as the
dependent variable from equation (1). The horizontal axis is the approval rating for the President from FiveThirtyEight
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Figure 7: Mobility responsiveness to confirmed cases and President’s approval rating
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Figure 11: Model estimates vs data in black dots. First vertical line is end of first training sample,
while every day before first and second vertical line is another training sample. We estimate 28
models, 10 of which are displayed in dashed lines. Data beyond the second line is test data for
cross-validation of optimal ensemble model. Optimal ensemble is shown in blue, while naive
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