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1 Introduction

In this chapter, we review the usefulness of bunching designs for the identification of

causal effects of interest. We consider how bunching may aid in the identification of the

model parameters, as well as the limits of identification given the current state of the

literature. We also discuss practical issues of implementation of these methods, provide

guidance to practitioners, and suggest directions for future work.

We note that the term “bunching” is not formally defined in most of the literature,

although the intuitive understanding of the term is clear. A necessary condition for

bunching is that observations of a certain variable are concentrated at a point, i.e., that a

certain value occurs with positive probability. A sufficient condition is to add to the

previous condition the requirement that, in a neighborhood of the concentration value, the

variable is continuously distributed with a continuous density. The specific strength of the

requirements implicit in the definition of bunching varies across the different methods

discussed in this chapter and are brought up whenever relevant.

Even for the strongest definition, bunching is a common phenomenon, frequently found

due to natural restrictions, artificial constraints, or incentives to concentration. The

number of examples is very large, and extensive lists can be found in most methodological

papers cited in this chapter. Overall, to find bunching, often one needs only to start

investigating variables, by plotting frequencies and cumulative distributions.

The bunching methods currently available are mainly divided into two branches. The

first branch leverages bunching in the outcome variable of a model, where the bunching

results from a discontinuous change in a schedule of incentives, for example, a change in

marginal tax rates between brackets. The seminal paper in this literature, in fact, the first

paper to leverage bunching at all, is Saez (2010), which suggested using discontinuities in

the worker’s budget constraint as a source of identification of worker’s responsiveness to the

tax rate. These discontinuities lead to bunching behavior, that is, heterogeneous workers

all choose the same amount of labor supply at these discontinuities, and we see mass points

1



in the distribution of earned income. Following this framework, a large literature has

emerged in which bunching is used to identify the causal effect of changing incentives on

the response of agents, which is typically summarized by an elasticity parameter. Some

interesting examples of applications include Collier et al (2021) and Ewens et al (2021a) in

finance, Jales (2018), Cengiz et al (2019), Goff (2022) in labor, and Ghanem et al (2020) in

environmental economics. Many other examples are mentioned in this chapter.

The second branch of the literature focuses on models with bunching in the treatment

variable, where the researcher is interested in the causal effects of such treatment. The

seminal paper in this literature is Caetano (2015), which examined the effects of smoking

during pregnancy on the child’s birth weight. The natural non-negativity constraint in the

amount smoked accounts for a pronounced bunching of around 80% of the sample at zero.

In this setting, bunching makes it possible to test whether the controls available in the

sample are sufficient to guarantee the exogeneity of the smoking variable. Succeeding

literature expanded testing potential into selection-on-unobservable models and into the

development of methods to correct estimators when the treatment is endogenous but

instrumental variables and panel data are unavailable. This branch of the literature has

grown considerably over the last few years, finding applications in economics, finance, and

political science. See, for example, the applications in Ferreira et al (2018); Caetano and

Maheshri (2018); Caetano et al (2019); Fe and Sanfelice (2022); Caetano et al (2023),

among several others mentioned in this chapter.

For bunching in the outcome variable, we discuss identification issues and the recent

work that points out the limits of (point) identification of elasticity parameters under more

general non-parametric settings and how to construct bounds for the parameters of interest

in these instances. We also discuss practical implementation issues and suggest directions

for future work.

In our discussion of the estimation of taxable earnings elasticities, we follow the

literature and consider the utility maximization problem of heterogeneous agents choosing
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consumption and labor supply. For a fixed wage, the budget set gives all feasible

combinations of consumption and earned income. The setup is general as it considers two

types of discontinuous changes in taxes. In the case of a kink, the budget frontier line is

continuous except for a discontinuous change in slope at a known point K, where the

marginal income tax rate changes. In the case of a notch, the budget line has a jump

discontinuity at a known point K, but the slope is constant otherwise; this occurs when

there is a lump-sum tax for income higher than K.

In the kink case, the slope may either decrease (concave kink, e.g., tax rate goes up) or

increase (convex kink, e.g., tax rate goes down). In the notch case, the jump discontinuity

may either be negative (negative notch, e.g., lump-sum tax) or positive (positive notch,

e.g., subsidy). Most of the applied work so far dealt with concave kinks and negative

notches, although there are important exceptions (for examples, see Bajari et al (2017);

Kuhn and Yu (2021)).

For bunching on the treatment, it is not necessary to specify the structural problem

that determines the choice of treatment. We discuss the general setting and why bunching

in the treatment variable in a model allows one to test the exogeneity of the treatment

variable, and discuss the available test choices and implementation. We focus our attention

in Caetano (2015)’s discontinuity test of the exogeneity of the treatment variable on a

selection-on-observables model, and in Caetano et al (2021a)’s dummy test of identification

in linear and two-way fixed effects models. However, identification testing has also been

studied in selection-on-observable models when there is bunching in a control variable, in

discrete-choice models including those with choice-level unobservables, and in triangular

models with instrumental variables, and we provide the appropriate references.

We also discuss how further structure in the model allows the use of bunching to

identify treatment effects in the presence of endogeneity without the use of exclusion

restrictions or panel data. We focus most of our attention in a simple linear model, where

the ideas can be easily understood, but we note that it is straightforward to apply the
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same strategies in more general models, including models with non-parametric correlated

random effects. Importantly, since the bunching correction strategy is not prone to weak

identification, it makes it possible to study heterogeneity of treatment effects along

different dimensions, which is not often possible with other identification techniques.

We also discuss how the structure in the above models can be relaxed in exchange for

partial identification of the treatment effects, which is often sufficient to justify empirical

claims. In fact, both the use of bounds as well as the usefulness of the exploration of

heterogeneous treatment effects along policy-relevant dimensions are well illustrated in

Caetano et al (2023), which is currently the best guide for how to apply these methods in

empirical work.

We end with a discussion of the direction of this branch of the literature, where some

recent findings opened a promising new frontier where bunching might be used as the sole

source of identification of non-parametric causal effects, as is the case with instrumental

variables and regression discontinuity designs.

The rest of the chapter is organized as follows. Section 2 covers bunching in the outcome

variable, while Section 3 covers bunching in the treatment variable. For bunching in

outcomes, Section 2.1 sets up the canonical utility maximization model; Section 2.2 reviews

the original methods and assumptions; Section 2.3 presents the modern methods; Section

2.4 discusses practical issues; and Section 2.5 describes extensions and future directions for

research. For bunching in the treatment variable, Section 3.1 explains how to use bunching

to test identifying assumptions, Section 3.2 concerns the identification of treatment effects,

and Section 3.3 describes recent developments and future directions for research. We

conclude in Section 4, and acknowledge others’ contributions to this chapter in Section 5.
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2 Bunching in the Outcome Variable and the Income

Tax Example

2.1 Model

In this section, we lay down the utility maximization model first proposed by the public

finance literature on bunching (Saez, 2010; Chetty et al, 2011; Kleven and Waseem, 2013).

These methods have been extensively used in applied research in taxation (Kopczuk and

Munroe, 2015), health care (Einav et al, 2017a), labor (Garicano et al, 2016; Goff, 2022),

environmental regulations (Sallee and Slemrod, 2012; Ghanem et al, 2019), education (Dee

et al, 2019), and energy demand (Ito, 2014). The exercise introduces the key underpinnings

for the rest of Section 2 and gives researchers a starting point for generalizations.

Assume that a worker has earnings Y, tax liability T (Y ), and ability term N. Workers

differ in their ability term N but are otherwise identical. The population of workers is

characterized by a continuous distribution of N . The preferences over consumption C and

earned income Y of each worker are characterized by

U(C,N) = C − N

1 + 1/ε

(
Y

N

)1+1/ε

,

where C = Y − T (Y ) and ε is the elasticity parameter, which is constant across workers.

To begin, assume that the worker faces a proportional tax, so that T (Y ) = tY , where t

is the marginal tax rate. In this case, taking first-order conditions, we can solve for the

worker’s optimal level of earnings, given his ability parameter, as:

Y = (1− t)εN.

To see why this is the solution, note that the marginal benefit of an increase in earnings

is given by the net-of-tax rate (1− t), whereas the marginal cost is (Y/N)1/ε. Equating
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them, we obtain Y = (1− t)εN .

Taking logs, we arrive at a log(Y ) = ε log(1− t) + log(N), which makes it clear the

interpretation of ε as the elasticity of earnings with respect to the net-of-tax rate.

Knowledge of ε implies knowledge of the causal effect of the tax rate on earnings.

For reasons that will become clear later, it is useful to plot the implied distribution of

log earnings that arise from particular values of the elasticity, tax rate, and a specified

distribution of earnings. For example, if the elasticity ε is zero, then the distribution of

earnings will coincide with the distribution of ability. As ε rises, individuals become more

sensitive to the tax rate and react by lowering earnings (working less, buying leisure). As a

result, the distribution of log earnings becomes a left-shifted version of the distribution of

ability. Figure 1 displays one example of an earnings distribution for particular values of

the parameters under the assumption that ability N is log-normal.

Figure 1: Earnings Distribution under a Proportional and Continuous Tax Rate
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Notes: Picture generated using Y = (1 − t)εN , where we set t = 0.1, ε = 0.2, and assume that N is
distributed as log-normal with mean 1 and variance 0.09.

Suppose now, instead, that the worker faces a discontinuous tax schedule. Two common

types of discontinuities are kinks, defined as changes in the slope of T (Y ), and notches,
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defined as jump discontinuities in T (Y ). We discuss each of these cases in turn. The

general tax liability function with one discontinuity at Y = K is

T (Y ) = 1I{Y ≤ K}t1Y + 1I{Y > K}(∆ + t2Y ). (1)

When the discontinuity is a kink, the marginal tax rate changes at K, such that the

worker’s tax liability is t1Y for Y ≤ K and t1K + t2(Y −K) for Y > K. In this case, we set

∆ = (t1 − t2)K in equation (1) so the budget line is continuous except for a slope

discontinuity at Y = K. When the discontinuity is a notch, the worker’s tax burden

changes discontinuously at K by ∆, and t1 = t2. The most common case of a kink is the

one where t1 < t2, e.g., Saez (2010); for a notch, it is ∆ > 0, e.g., Kleven and Waseem

(2013). For now we assume the most common cases but later in this chapter we also

discuss extensions to the less common cases of a kink with t1 > t2 and a notch with ∆ < 0

(Sections 2.5.2 and 2.5.4, respectively).

Regardless of the nature of the discontinuity (kink or notch), the optimal solution to

the utility maximization problem has the following form:

Y (N) =


N(1− t1)ε , if N < N

K , if N ∈ [N,N ]

N(1− t2)ε , if N > N,

(2)

where N = K(1− t1)−ε is the lowest level of ability among bunching individuals, and the

expression for N depends on the nature of the discontinuity and is given below for kinks

and notches.

Consider first the typical case of a kink, that is, t1 < t2 and ∆ = (t1 − t2)K. For

workers that would, in the absence of the tax rate increase, choose earnings below the kink

point, the solution is the same as already discussed above: Y = N(1− t1)ε. However, the

workers that would choose earnings above the kink point, now choose a lower income
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because they face a higher marginal tax rate. Those workers bunch at K because they

would optimally choose Y < K if the higher tax rate t2 also prevailed below the kink; but

in reality the tax rate is t1 below the kink, so they obtain higher utility by choosing

Y = K. Among the workers that bunch, the one with the highest ability is the one who

would choose exactly Y = K if the higher tax rate t2 prevailed below the kink point. Every

worker with ability level higher than that will choose Y > K. Therefore, N = K(1− t2)−ε

in equation (2) above.

Next, consider the typical case of a notch where the worker’s tax liability

discontinuously increases after the threshold K; that is, the case where ∆ > 0 and t1 = t2.

Again, for the workers that would, in the absence of the notch, choose earnings below the

notch point, the solution is the same with or without the notch: Y = N(1− t1)ε. However,

the workers that would choose earnings above the notch point might be better off staying

right at the notch to avoid the lump-sum tax. There is a worker at a particular ability level

N I who is indifferent between placing themselves at the notch or behaving just as they

would do without the notch. The value of N I is implicitly determined by the following

indifference condition,

K(1− t1)− N I

1 + 1/ε

(
K

N I

)1+1/ε

= N I(1− t1)ε+1 −∆− N I

1 + 1/ε

(
N I(1− t1)ε

N I

)1+1/ε

, (3)

that is, the utility of ability type N I at income Y = K must equal the utility of optimally

choosing Y I = N I(1− t1)ε > K. Every worker with an ability level above N I will prefer

not to bunch. Therefore, N = N I in equation (2) above. Note that, unlike the kink case,

Y (N) is a discontinuous function of N in the notch case because t1 = t2 and N < N by

equation (2).

Starting with a continuous distribution of ability N with full support, equation (2)

determines the distribution of Y . The resulting distribution of earnings is a mixed

continuous-discrete random variable: there is a mass point at Y = K, which equals
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P[N ∈ [N,N ]] > 0, but the distribution is continuous elsewhere. The literature defines this

mass as the bunching mass B, that is, the proportion of individuals that report taxable

income at the discontinuity point K,

B ≡ P [Y = K] = P
[
N ≤ N ≤ N

]
. (4)

Figure 2 illustrates how the earnings distribution looks like in the cases of a kink and a

notch, both using the same log-normal distribution of N . Note that the discontinuity of

Y (N) as a function of N in the case of a notch translates into a gap of missing mass in the

distribution of Y . The gap interval equals [K,Y I ], where Y I = N I(1− t1)ε is the optimal

income of the agent that is indifferent between bunching or not, by equation (3).

We can also conceptualize the counterfactual distribution of income Y0 that we would

observe in the absence of a kink or a notch. The solid contour lines in Figure 2 display the

counterfactual distribution of income corresponding to each case. The range of

counterfactual income values for those agents that otherwise choose to bunch takes the

form of [K + ∆Y (ε)], where the expression for ∆Y (ε) depends on ε and whether the

discontinuity is a kink or a notch. The range corresponds to values of Y0 = N(1− t1)ε for

N ∈ [N,N ]. In the kink case, agents with counterfactual income between N(1− t1)ε = K

and N(1− t1)ε = K [(1− t1)/(1− t2)]ε will bunch at Y = K in the presence of the kink.

Likewise, in the notch case, agents with counterfactual income between N(1− t1)ε = K

and N(1− t1)ε = N I(1− t1)ε = Y I will bunch at Y = K in the presence of the notch. The

bunching mass can be written as,

B = P [K ≤ Y0 ≤ K + ∆Y (ε)] . (5)

Equations (2), (4), and (5) are the basis for all estimators in the literature.

All empirical analyses build on this type of framework to explain observed bunching in

the distribution as a result of optimal behavior from a discontinuous change in incentives.
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Figure 2: Bunching Resulting From a Kink or a Notch in the Budget Constraint

0
.2

.4
.6

.8
1

1.
2

D
en

si
ty

1 2 4 5 6 7 8K
Earnings

Latent Distribution Observed Distribution

0
.2

.4
.6

.8
1

1.
2

1.
4

D
en

si
ty

1 2 4 5 6 7 8K
Earnings

Latent Distribution Observed Distribution

Notes: Plot generated using Y0 = (1− t1)εN for the counterfactual income and equation (2) for the observed
income in the case of a kink (top panel) or a notch (bottom panel). We set t1 = 0.1, t2 = 0.2, ∆ = 0.05,
K = 3, ε = 0.2, and assume that N is distributed as log-normal with mean 1 and variance 0.09.

The key insight from this framework is that the higher the elasticity parameter, the more

workers are willing to change their taxable earnings due to a tax change. In other words,

workers’ behavior is more sensitive to the tax. Thus, it is intuitive to think that the larger

the elasticity parameter, the more bunching will be present for any given and fixed

distribution of ability. This basic intuition led researchers to rely on the observation of
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bunching to identify the elasticity parameter.

The problem of identification of ε is as follows. Equation (2) maps the distribution of N

to the distribution of Y and is a function of ε, t1, t2, and ∆. The researcher observes the

distribution of income Y , the point K, the tax variables (t1, t2,∆), but does not observe ε

nor the distribution of N . To point-identify ε is to solve for a unique ε that is consistent

with the observed distribution of Y and the tax values (t1, t2,∆), regardless of the

distribution of N . Likewise, to partially-identify ε is to find all values of ε that are

consistent with the observed quantities regardless of the unobserved distribution of N . We

may also describe the problem of identification in terms of Y0 in the place of N . First, we

write down the map that takes the distribution of Y0 to the distribution of Y , where the

map is again a function of ε, t1, t2, and ∆. Then, the identification problem consists of

solving for ε that is consistent with the observed distribution of Y and the tax values

(t1, t2,∆), regardless of the counterfactual distribution of Y0.

2.2 Original Bunching Methods

This section presents the original bunching identification methods developed for kinks

and notches (Saez, 2010; Chetty et al, 2011; Kleven and Waseem, 2013) and discusses the

assumptions required, in light of the critique by Blomquist and Newey (2017) and

Bertanha et al (2018).

To solve the identification problem for ε, a natural first step is to restrict the class of

possible distributions of ability N or counterfactual income Y0. All original bunching

methods rely on such restrictions in an implicit way. This is a point of considerable

confusion in the literature that we hope to clarify in this section. Before we talk about

these restrictions, let fY and fY0 denote the probability density functions (PDF) of Y and

Y0. It is important to look at the relationship between these PDFs. From the discussion in
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the previous section, in the kink case,

fY (y) =


fY0(y), if y < K∫ K+∆Y (ε)

K
fY0(u) du, if y = K

fY0

(
y
(

1−t1
1−t2

)ε)(
1−t1
1−t2

)ε
, if y > K,

(6)

and in the notch case,

fY (y) =

 fY0(y), if y 6= K∫ K+∆Y (ε)

K
fY0(u) du, if y = K.

(7)

Panels (a) and (b) of Figure 3 illustrate the relationship in equation (6). The following

assumption gives a general characterization of the type of restrictions made in the

literature.
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Figure 3: The Identification Problem in the Kink Case
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(e) Dist. of Y0 for the Smallest Elasticity

0
.5

1
1.
5

2
2.
5

3
D
en
si
ty

2.6 2.7 2.8 2.9 3 3.1 3.2
Earnings

(f) Dist. of Y0 for the Largest Elasticity
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Notes: Panels (a), (b), and (c) illustrate the observed and counterfactual distributions. Panels (d), (e), and (f) use simulated data on the counterfactual
distributions. Panel (a) illustrates the probability density function (PDF) of observed income Y with mass point B at the kink K. Panel (b) shows
the PDF of counterfactual income Y0 in the absence of the kink. The relationship between PDFs in (a) and (b) is given in equation (6), but there is
no information in fY about m other than the area B. Panel (c) illustrates the trapezoidal approximation to m, which in this illustration overestimates
the true elasticity, ε̃ > ε. Panel (d) takes the distribution of counterfactual income of Figure 1 and zooms in at the bunching interval. The red lines
in Panels (d),(e), and (f) denote K and K + ∆Y (ε), respectively. Panels (e) and (f) present alternative distributions of counterfactual income that
are consistent with the observed distribution of income but have different values of the elasticity. For a given maximum slope restriction on that
distribution (Section 2.3.1), Panel (e) shows the highest PDF of Y0, which corresponds to the lower bound on the elasticity. Similarly, Panel (f) shows
the lowest PDF of Y0, which corresponds to the upper bound on the elasticity.
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Assumption 1. There exists an interval A containing (K,K + ∆Y (ε)), a known function

m, and a unknown vector of parameters β0 ∈ Rk such that fY0(y) = m(y; β0) for every

y ∈ A. Moreover, replacing fY0 with m in equation (6) in the kink case, or equation (7) in

the notch case, sets up a system of equations that solve uniquely for β0 and ε.

This assumption essentially states two important requirements. First, the

counterfactual earnings distribution belongs to a parametric class over its most important

part, which is the interval (K,K + ∆Y (ε)) that consists of individuals that will bunch at

Y = K in the presence of a kink or a notch; m(·; β0) corresponds to m(·) in Panel (b) of

Figure 3. Second, this parametric form applies to A which extends a little beyond the

bunching interval (K,K + ∆Y (ε)); this is done because it is outside of the bunching

interval where we could learn something about the shape of fY0 through the observation of

the shape of fY outside of the discontinuity region. The interval A is long enough and the

function m is rich enough such that the extension of A over (K,K + ∆Y (ε)) allows for the

identification of ε and β0. One special case of this assumption is when the interval A is the

whole real line. In this instance, we have a parametric functional form on the entire

distribution of counterfactual earnings; see Meyer and Wise (1983) for an early example of

this assumption. We don’t need to go that far but simply need A to be big enough to pin

down β0 and ε through equations (6) or (7). We discuss this procedure in the context of

the first wave of the literature below.

2.2.1 Original Kink Methods

The original kink bunching methods focused on the size of the bunching mass to recover

an elasticity. These methods build on the fact that the elasticity increases with the amount

of bunching, ceteris paribus. This can be seen in equation (5), where bunching increases

with ∆Y (ε). The previous section demonstrates, however, that the elasticity can also

increase with a change in the shape of the unobserved counterfactual distribution, ceteris

paribus. It is, therefore, critical to understand the assumptions being made about the
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counterfactual distribution and the sensitivity of the estimates to those assumptions in

evaluating different methods.

The method proposed by Saez (2010) originates in the following approximation of B

from equation (5),

B =

∫ K+∆Y (ε)

K

fY0 (u) du ≈
(
fY0(K + ∆Y (ε)) + fY0(K)

2

)
∆Y (ε)

=
1

2

(
fY (K+)

(
1− t2
1− t1

)ε

+ fY (K−)

)
K

[(
1− t1
1− t2

)ε

− 1

]
, (8)

where fY (K+) = limu↓K fY (u), fY (K−) = limu↑K fY (u), fY0(K) = fY (K−),

fY0(K + ∆Y (ε)) = fY (K+)
(

1−t2
1−t1

)ε
, and ∆Y (ε) = K

[(
1−t1
1−t2

)ε
− 1
]
.

Equation (8) above corresponds to equations (4) and (5) in Saez (2010). The

approximation to the integral is called the trapezoidal approximation. Saez (2010) uses

equation (8) to solve for the elasticity as an implicit function of the known quantities K, t1,

t2, and the quantities estimated from the data fY (K−), fY (K+), and B. Although many

think of this as a flexible procedure, it is important to clarify that the trapezoidal

approximation implicitly assumes that the PDF of Y0 is an affine function over the

bunching interval and to the right of the kink. In terms of Assumption 1,

A = [K,K + ∆Y (ε)] and m(y; β0) = β0,1 + β0,2y, where β0 = (β0,1, β0,2)′. The trapezoidal

approximation is illustrated in Panel (c) of Figure 3.

The equation for B given in equation (6) in Chetty et al (2011) comes from a similar

derivation, where fY0 is approximated with the uniform density inside the bunching interval

and the counterfactual distribution immediately to the right of the kink; in terms of

Assumption 1, set A = [K,K + ∆Y (ε)] and m(y; β0) = β0. Equation (5) can then be

written as,

B =

∫ K+∆Y (ε)

K

fY0(u) du ≈ fY0(K)∆Y (ε) = fY0(K)K

[(
1− t1
1− t2

)ε

− 1

]
. (9)
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Therefore, subsequent work that use equation (9) are implicitly restricting the distribution

of Y0 to be uniform in the bunching region. For small tax changes, [(1− t1)/(1− t2)]ε − 1

≈ ε log[(1− t1)/(1− t2)]. Substituting this into equation (9) gives

ε ≈ B/fY0(K)

K ln
(

1−t1
1−t2

) =
B/fY (K−)

K ln
(

1−t1
1−t2

) .
The affine assumption implicit in (8) is slightly weaker than the uniform assumption in

(9) because it allows the counterfactual distribution fY0 to have a non-zero slope in the

bunching interval. One can argue that these assumptions are only approximations over a

“small” interval. The problem, however, is that without a priori knowledge of the elasticity,

the size of the interval and the quality of the approximation are both unknown.

Unfortunately, the elasticity is sensitive to the shape of fY0 , and thus mistakes on the

distributional assumption can lead to substantial bias in the estimator (Blomquist and

Newey, 2017; Bertanha et al, 2018; Coles et al, 2022), as we discuss in Section 2.2.3.

2.2.2 Original Notch Methods

Kleven and Waseem (2013) propose an method for the case of a notch that also makes

the uniform assumption on fY0 over the bunching interval and the counterfactual

distribution immediately to the right of the notch. Equation 5 in that paper results from

taking the indifference condition in equation (3) above and substituting N I = Y I(1− t1)−ε:

1

1 + ∆Y (ε)/K

[
1 +

∆/K

1− t1

]
− 1

1 + 1/ε

[
1

1 + ∆Y (ε)/K

]1+ 1
ε

− 1

1 + ε
= 0.

Kleven and Waseem (2013) combine this equation with knowledge of ∆, K, and t1, plus an

estimate for ∆Y (ε) to numerically solve for the elasticity. They use the bunching mass and
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the uniform assumption on fY0 in equation (5) to obtain the estimate for ∆Y (ε),

∆Y (ε) =
B

fY0(K)
=

B

fY (K−)
.

Kleven and Waseem (2013) follow the previous literature on kinks and thus implicitly

impose a parametric assumption on fY0 to obtain ∆Y (ε). Although one can use flexible

methods that “resemble” non-parametric estimators for such a task, it should be stressed

that the identification of the latent density in the interval affected by the notch is

parametric. That is, there must be a belief that one can properly extrapolate the observed

behavior in the unaffected area of the distribution towards the affected part.

2.2.3 Discussion of the Original Method’s Assumptions

The fundamental empirical hurdle with bunching is that the counterfactual distribution

is unobserved. In the case of notches, the interval over which agents at the notch would

have been in the absence of the notch is given by the gap in the distribution. The same

interval exists with kinks but is unobserved because everyone above the kink changes their

behavior in reaction to the kink and fills in that gap. In the case with kinks, the interval

length itself is unknown and could be large because it depends on the unknown elasticity

that we wish to identify. The original bunching methods rely on trapezoidal or uniform

approximations to the unobserved counterfactual distribution over the relevant interval. If

it is true that the PDF of the unobserved distribution is an affine function over that

interval, which is a parametric assumption, then approximations used in the original

bunching methods become exact.

However, Blomquist and Newey (2017) demonstrate that these parametric assumptions

may be too strong in many settings and that the estimates are very sensitive to small

changes in the quality of the approximations or, equivalently, to small deviations in the

unobserved PDF relative to the affine function. They also show that retrieving the
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elasticity without any assumption on the unobserved PDF beyond continuity is impossible.

This does not mean that researchers must live with strong parametric conditions. The

modern bunching methods discussed in Section 2.3 use flexible semiparametric assumptions

instead, which applied researchers may find more natural.

In this section, we discuss the assumptions in the original bunching methods and

explain how the estimates are affected by deviations from these assumptions. Figure 3

illustrates the problem of identification of ε. The distribution in Panel (a) is identified from

the data, but the distribution in Panel (b) is not fully identified. The nature of the

problem allows us to learn some aspects of fY0 given our knowledge of fY . First, we know

that the portion of fY0 to the left of K is identical to the portion of fY to the left of K.

Second, the portion of fY0 to the right of K + ∆Y (ε), where ε is unknown, relates to the

portion of fY to the right of K, up to scaling factors. Finally, the area under fY0 over the

bunching interval [K,K + ∆Y (ε)] equals the bunching mass B, where B is observed

because the distribution of Y is observed. We know B, but we do not know m, that is, the

shape of fY0 in that interval. The only thing we know about m are the area underneath m

and its values at the boundaries of the interval, up to a scaling factor. In other terms,

m(K) = fY0(K) = fY (K−) and m(K + ∆Y (ε)) = fY0(K + ∆Y (ε)) = fY (K+)
(

1−t2
1−t1

)ε
.

A natural question to ask is whether it is possible to identify the elasticity without

imposing restrictions on m other than continuity. The answer to this question is no and

was demonstrated by Blomquist and Newey (2017). Their result can be explained

graphically in terms of Figure 3. If m has an extremely high peak, we obtain area B by

integrating over a very small interval [K,K + ∆Y (ε)], which translates into a small

elasticity as in panel e of Figure 3; if m has a valley, we obtain the same area B by

integrating over a much larger interval [K,K + ∆Y (ε)], which translates into a bigger

elasticity as in panel f of Figure 3. The bottom line is that we may obtain any elasticity we

want by using different shapes of m.

The same identification problem affects the original notch method because it relies on
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the same assumption that fY0 is uniform. However, Bertanha et al (2018) showed that there

exists an alternative way to identify elasticities from notches that do not require further

assumptions on m other than continuity. The superior identification potential in the notch

case is unfortunately undermined by the difficulties brought upon by friction errors. We

discuss the identification with notches and practical challenges in Section 2.5.1 below.

Despite the limitations, the original bunching methods were pioneers in the

investigation of behavioral responses previously unstudied due to a lack of experimental or

quasi-experimental data, panel data, instrumental variables, etc. Following these influential

methods, a large body of empirical work developed in a variety of areas, including finance

(Collier et al, 2021; Ewens et al, 2021a), labor (Jales, 2018; Cengiz et al, 2019; Goff, 2022),

sports (Allen et al, 2017), electricity markets Ito (2014), real estate (Kopczuk and Munroe,

2015), and many others. As discussed above, additional structure (for example, more

assumptions on the distribution of ability beyond simply continuity) or data variation (for

example, credible control groups, different time periods, or individual characteristics that

predict ability) is necessary to identify the elasticity. These needs have sparked a recent

literature that aims to identify elasticities with different and weaker assumptions. We

discuss these modern methods in Section 2.3 below.

2.3 Modern Methods

In our view, the modern bunching field can be seen as a wide expanse of methods aiming

to leverage bunching while minimizing assumptions in specific contexts. This section can

be read as a practical menu, where different bunching methods may be chosen according to

which assumptions are admissible in the specific situation and the type of data available.

In many cases, it is possible to provide different estimates for the same application using

assumptions of varying strength. Several of these methods are readily implementable

through the Stata package bunching, which is discussed in detail in Bertanha et al (2022b)

and is available at Boston College’s Statistical Software Components (SSC).
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Most of the new developments in this literature leverage bunching that results from

kinks in the budget constraint. For the most part, we follow this literature in this section

and thus focus the exposition on the kink case. However, the solutions are general and

could be applied to contexts with notches or other models with bunching; we discuss

extensions to other models in Section 2.5.

2.3.1 Bounds for the Elasticity with the Weakest Assumptions

In this section, we discuss partial identification of the elasticity under mild shape

assumptions on the unobserved distribution of ability when there is a kink in the budget

constraint. Blomquist and Newey (2017) showed that if the PDF of ability is monotone,

then it is possible to obtain bounds on the elasticity. Bertanha et al (2018) proposed

different bounds under the assumption that the magnitude of the slope of the PDF of log

ability (n = log(N)) is bounded by a known constant M > 0. More recently, Goff (2022)

showed that bounds on the elasticity could also be obtained by assuming that the

distribution of ability belongs to the large class of bi-log concave distributions. All of these

approaches bypass the need for parametric assumptions on the distribution of ability.

The bounds in Bertanha et al (2018) and Goff (2022) have three attractive properties:

closed-form expressions, yield a positive lower bound when the distribution of Y displays

bunching, and nest the estimate based on the trapezoidal approximation. We focus our

attention here on Bertanha et al (2018)’s bounds, which are easily computed in Stata using

the command bunchbounds. An application of these bounds appear in Section 5 of

Bertanha et al (2022c) using data from U.S. tax returns and various choices of M .

Figure 3 provides visual intuition for the bounds. Panel (d) in that figure displays the

counterfactual distribution of income from Figure 1 and zooms in at the bunching interval

(red lines). Panels (e) and (f) provide alternative counterfactual distributions of income

that are consistent with the observed data on Y but have different shapes of m over the

bunching interval. For a given value of the maximum slope M , these are the highest and
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lowest possible m functions, which correspond to the lowest and highest elasticity values,

respectively. Figure 4 computes the bounds for various choices of M using the sample data

included in the Stata package bunching; the true elasticity used to generate that data is

0.5. The red-dashed line shows the trapezoidal approximation estimate, which is always at

the intersection of bounds at the lowest value of M . When the true slope of the

distribution happens to be equal to that lowest value, the bounds are the tightest and the

trapezoidal approximation estimate will retrieve the correct elasticity. When the true slope

is large, it is possible to rationalize a much wider range of elasticities and the trapezoidal

estimate may be far off. The bounds method provides an important sensitivity check for

researchers identifying an elasticity with stricter assumptions. For example, Kostøl and

Myhre (2021) utilize these bounds to examine the robustness of labor supply responses to

incentives in the Norwegian welfare system (see their Appendix A, page 8).

Figure 4: Bounds for Various Choices of Maximum Slope
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Notes: This figure plots the lower and upper bounds for various choices of the maximum slope parameter
M . The graph was produced by the Stata command bunchbounds using the included sample data where
the true elasticity is 0.5.
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2.3.2 Point Identification when Plausible Control Groups are Available

Coles et al (2022) develop a method of using a control group to estimate the

counterfactual distribution. To implement this method, researchers need both richer data

and to gauge the plausibility of the control groups in the context of their specific empirical

setting.

For example, Hungerman and Ottoni-Wilhelm (2021) study a kink created by a tax

deduction in Indiana for donations to universities. For a control group, they use the

distribution of donations in other states that do not have that kink.

Hungerman and Ottoni-Wilhelm (2021) contrasts the control group method with

methods in Saez (2010), Kleven and Waseem (2013), and Chetty et al (2011). Briefly, Saez

(2010) uses the density on either side of the kink and extrapolates a linear line between

them as the estimate of the counterfactual distribution (see the discussion in Section 2.2.1

of this trapezoidal approximation). Kleven and Waseem (2013) and Chetty et al (2011) use

a polynomial estimation using additional data on both sides of the kink. An advantage of

these methods is that round number bunching can be addressed by including dummy

variables for round numbers.

Finally, the control group method estimates a polynomial with additional data from a

group that does not experience a kink but is otherwise similar to the treated group. The

estimates rely on data unaffected by the kink and over the relevant range for the estimation,

which includes both the area around the kink where there is bunching and the area in the

distribution where the individuals who bunch came from. Hungerman and Ottoni-Wilhelm

(2021) provide several checks of the identifying assumption by (1) gathering qualitative

data to check the balance between the treatment and control groups, (2) estimating bounds

based on potential heterogeneity across states, and (3) providing several placebo tests.

The change in the running variable ∆Y (ε) is identified using the control group,

treatment group, and the relationship between them. Specifically, from equation (5),

B =
∫ K+∆Y (ε)

K
fY0(u) du, where fY0 is identified from the control group, B is identified from
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the treatment group, and we solve for ∆Y (ε). The estimate of the change in the running

variable can then be used to calculate the elasticity, which is valid for small or large

price-change kinks (Hungerman and Ottoni-Wilhelm, 2021). Because the control group

method estimates the change in the running variable, Coles et al (2022) reports it in their

main results and demonstrates how to calculate the elasticity with different assumptions on

the kink size.

The control group can face kinks in their distribution as long as they are not affected

by a kink local to the focal kink in the treatment group. For example, Coles et al (2022)

use the distribution of firms with different levels of net operating losses (NOLs) as a control

group because these firms experience the kink point at different levels of Y. Specifically, a

firm with $10,000 in NOLs experiences a 0% tax rate until they earn $10,000 of income and

then 15% for each dollar after (until the next kink). Firms with $11,000 in NOLs provide a

natural control group. These firms are unaffected by a kink at $10,000 because their kink is

at $11,000. Therefore, firms with $11,000 in NOLs can be used to estimate what the

distribution for firms with $10,000 in NOLs would have looked like in the absence of the

kink. Similarly, Gelber et al (2020) use the earnings density of 72-year-olds to estimate a

counterfactual distribution for 70- and 71-year-olds that face a nonlinear budget constraint

due to the Earnings Test in social security. Alternatively, policy changes can be used to

generate control groups (Hamilton, 2018), though bunching may be persistent across time,

and other dynamic effects may need to be accounted for (Marx, 2022).

2.3.3 Point Estimates with Covariates or Flexible Distribution Assumptions

Bertanha et al (2022c) propose two methods that achieve point identification of the

elasticity with substantially more flexible distributional assumptions than those adopted by

the original bunching methods. They apply these methods to data on U.S. tax returns

from self-employed individuals and find that elasticity estimates for self-employed and not

married individuals are robust across methods.
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The key insight of these methods is to connect bunching to censored regression models.

The first method is a truncated Tobit model. The second method is a censored quantile

regression. These methods rely on different identifying assumptions and therefore provide

complementary evidence. They could also be easily implemented using existing statistical

software for censored regression models. In particular, the truncated Tobit model can be

implemented using the custom-built Stata command bunchtobit, which is part of the

package bunching (Bertanha et al, 2022b); an additional advantage of this method is that

it provides visual diagnostics of the appropriateness of the distribution assumptions that it

makes.

The first method adds structure to the problem by restricting the unobserved

distribution of ability. With the assumption that the conditional distribution of log ability

n given covariates X is normal, the elasticity could be estimated with a Tobit model — but

this assumption is unnecessarily strong. Lemma 1 by Bertanha et al (2022c) provides

sufficient conditions on the joint distribution of (n,X) for consistency of the Tobit elasticity

estimator. These are semi-parametric assumptions on the distribution of (n,X) that do not

require normality of the conditional distribution n given covariates X. Figure 5 displays an

example of such distribution using data simulated from Experiment 2 in Section 4.2.1 by

Bertanha et al (2022c). In short, these assumptions are: (i) the distribution of n is a

mixture of normals averaged over the non-parametric distribution of X; and (ii) the Tobit

best-fit unconditional distribution for log income y matches the observed distribution of y.

Assumption (i) becomes weaker with more variation in covariates because the class of

distributions of n becomes richer the bigger the class of distributions of X. For small

elasticities, one can show that assumption (ii) is implied by a linear assumption on the first

two moments of the distribution of (n,X). Assumption (ii) is easy to verify in practice.

Researchers simply need to compare the Tobit best-fit distribution of y to the observed

distribution of y as a visual diagnostic of the appropriateness of Assumption (ii). Figure 5

demonstrates this visual diagnostic in a stark example of the Tobit model’s robustness to a
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lack of normality. Panel (d) of this figure graphs the observed distribution in tan bars, and

the black line gives the Tobit model fit. Despite the observed data being asymmetric and

including spikes (and generally not looking normally distributed) the Tobit model fits the

data well, satisfying assumption (ii), and the Tobit elasticity estimate is very close to the

true elasticity. The additional advantage of this estimator is that standard quasi-MLE

asymptotic inference applies, which makes it readily implementable in the vast majority of

statistical software.

The original bunching methods relied solely on data near a kink or notch point to

estimate an elasticity using local assumptions. Likewise, Bertanha et al (2022c)

recommend estimating Tobit models using truncated samples of y at decreasing windows

centered at the kink. The Stata command bunchtobit graphs the estimates for different

window sizes in its default setting.

The advantage of truncation is that it only requires the Tobit identification

assumptions to hold in a small interval around the kink. In practice, using smaller windows

tends to improve the distribution fit but also tends to decrease estimation precision as it

relies on less data. The researcher can compare the Tobit best-fit distribution of y and the

observed distribution of y as a visual diagnostic of whether the identification assumption is

likely to hold in their specific context.

Figure 6 demonstrates this visual diagnostic using data simulated from Experiment 1 in

Section 4.2.1 by Bertanha et al (2022c). To demonstrate how the truncation works, this

example shows the Tobit best-fit distribution both with and without covariates; more

truncation always improves fit, but fitting the distribution requires less truncation when we

include the right covariates, that is, those that predict the distribution of y. The

distribution of log ability is again asymmetric and has a pointed peak, which is far from

Gaussian. The first row of panels in Figure 6 corresponds to the misspecified Tobit model,

that is, the one that omits the correct covariate. The Tobit best-fit line using 100% of the

data (black line) does not fit the simulated data (tan bars) and does not recover the true
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Figure 5: Consistency of the Tobit Estimator with Non-Normal Distributions
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Notes: The figure illustrates 50,000 observations simulated from the data-generating process in Experiment
2 by Bertanha et al (2022c). We refer the reader to Section 4.2.1 of that paper for the details. The variable
log ability n is approximately a mixture of two Skewed Generalized Error Distributions, the kink point is at
k = 2.0794, and ε = 1. Panel (a) shows the distribution of the discrete scalar covariate X. Panels (b) and
(c) display the lack of normality in the conditional distribution of log income y given X for two values of X.
Panel (d) shows the histogram of simulated data for log income y and the best-fit Tobit distribution that
correctly includes covariate X. The last panel was produced using the Stata command bunchtobit.

elasticity estimate. The fit gets better with the smallest truncation window that uses 20%

of the data, in which case the estimator recovers the true elasticity. The second row of

panels in Figure 6 refer to the correctly specified Tobit model, that is, the one that includes

the correct covariate. Even with a lack of normality, we see that it is possible to achieve a

perfect fit and retrieve the correct elasticity without any truncation once we include the

right covariate.
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Figure 6: Truncated Tobit Method under a Non-Normal Distribution of Ability
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Notes: The figure illustrates 50,000 observations simulated from the data-generating process in Experiment 1 by Bertanha et al (2022c). We refer
the reader to Section 4.2.1 of that paper for the details. Log ability n is distributed as a mixture of two Skewed Generalized Error Distributions, the
log-kink point is at k = 2.0794, and ε = 1. Panels (a)–(d) correspond to the fitting of a Tobit model that is incorrectly specified by omitting the
covariate X. Panels (a)–(c) display the histogram of log income y and the best-fit Tobit distributions for three truncation windows. Panel (d) shows
the elasticity estimate vs. the amount of data used in each truncated sample and 95% confidence intervals. Finally, Panels (e)–(h) repeat the exercise
for a Tobit model that is correctly specified by including the covariate X. This figure was produced using the Stata command bunchtobit.
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The second method relies on censored quantile regressions to identify the elasticity. The

assumption is that the conditional quantile of log ability n given covariates X is a known

parametric function of X with unknown parameters. The approach estimates the

conditional quantile of y given X, allowing for different intercepts before and after the kink.

If there is sufficient variation in the covariates above and below the kink, then the elasticity

is identified as a function of the two intercepts. This only requires a parametric restriction

on the conditional quantile of n given X, that is, a semi-parametric restriction on the

distribution of (n,X). Section B.4 of the supplemental appendix by Bertanha et al (2022c)

provides practical steps to estimate the elasticity building on Chernozhukov and Hong

(2002).

2.4 Practical Issues on Identification and Estimation

There are three important practical considerations with bunching estimators. The first

is that bunching estimators often rely on tuning and identification parameters. For

example, in the original bunching estimators, researchers needed to choose the upper and

lower bounds of the bunching region over which bunching was calculated, the income

window to use to estimate the flexible polynomial for the counterfactual distribution, and

the order of the polynomial in the counterfactual distribution. Coles et al (2022) find that

the elasticity estimates using the control group method described in Section 2.3.2 were less

sensitive to these parameter choices than the original bunching estimators in the context of

firms bunching at kink points in the corporate tax schedule. Another approach is to favor

methods with fewer tuning parameters. For example, Goff (2022) provides a different

approach to bounding an elasticity that avoids tuning parameters. Researchers should test

the sensitivity of their estimates to these parameters and consider using data-driven

methods, such as cross-validation, to select them if the estimates are sensitive.

The second practical consideration is the existence of multiple kinks and notches in the

budget constraint. When the budget constraint only has kinks and no notches, inference
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can be applied to each kink separately, as implemented in Goff (2022) and Agostini et al

(2022). The reason that inference can be applied in this way is that the range of

individuals that bunch at a kink point is unaffected by the kinks that precede it. The same

is not true when the budget constraint has kinks and notches. In the case with notches, the

range of individuals that bunch at a kink point may be affected by a preceding notch. It

should be noted that, in some contexts, it is reasonable to assume that the elasticity is the

same across all kink points. In this case, intersections of bounds at each kink point could

be used to produce narrower bounds for the elasticity (Bertanha et al (2022c), Corollary

1). In other cases, the elasticity likely differs, and comparing elasticities across kinks is

informative.

The third practical consideration is that the model of the observed income distribution

necessarily abstracts from additional factors that may shape it. In some cases, the

elasticity estimates are sensitive to these factors, and so these must be taken into account.

The additional factor that has received the most attention in the literature is what is

referred to as adjustment costs or optimizing frictions. Optimizing frictions limit how

precisely agents can adjust Y. For example, adjustments to income might be lumpy, or

there might be uncertainty about how income will come in. As a result of these frictions,

the observed distribution of Y has increased mass at the kink and around it. If the

observed distribution of Y has diffuse bunching, then not accounting for optimizing

frictions could bias the elasticity estimate.

In order to incorporate optimizing frictions into the model, two different strategies are

usually considered. The first strategy is to recover the income distribution if there are no

optimizing frictions and then estimate the elasticity using the methods discussed in the

previous sections. An ideal way to do this would be to model the distribution of income as

a convolution of the distribution of income without friction errors and the distribution of

optimizing errors and then deconvolute the two distributions. Dube et al (2018) use

deconvolution to study heterogeneous parameters across firms using bunching in wages at
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round numbers. They are able to provide a distribution of parameters under a range of

assumptions. They show that round-number bunching suggests that employers face

optimization frictions and have some monopsony power. This remains an open area of

research and Cattaneo et al (2018) are currently working on this problem. Without a

comprehensive theory for optimizing errors, this approach remains infeasible. Less general

but practical solutions have been proposed in their place. For example, Bertanha et al

(2022c) develop a filtering procedure where optimizing frictions are modeled as an additive

error in the optimal income variable. The filtering procedure works well when 1) the

support of the error distribution is small, finite, and known by the researcher, and 2)

agents that bunch are more affected by the frictions than agents that do not. The Stata

package bunching has an option that performs this filtering procedure. A similar filtering

procedure that uses the bulge in the cumulative distribution function to filter out the error

is proposed by Alvero and Xiao (2020).

The second strategy is to incorporate a comprehensive theory of friction into the model.

For example, Gelber et al (2013) uses policy-induced changes in the magnitude of kinks to

estimate adjustment costs. Bertanha et al (2022c) propose an extension of their Tobit

model that includes optimizing frictions, similar to how measurement error is incorporated

into censoring models.

2.5 Extensions and Future Work

This section provides a description of preliminary work and extensions to the basic

model.

2.5.1 Models with Notches in the Absence of Measurement Error

In some settings, bunching is sharp because agents do not experience adjustment costs

or frictions, and there is minimal measurement error. In this case, Bertanha et al (2018)

showed how to non-parametrically identify the elasticity using notches, that is, without
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having to assume more than the continuity of the distribution of ability N . As shown in

Section 2.1, the key to the identification of elasticity in the notch case is that – in the

absence of frictions – there is a gap in the distribution of Y , between K and

Y I = Y (N I) = Y (N), which is depicted in Panel (b) of Figure 2. The magnitude of this

gap is informative of the elasticity.

In equation (2), we have Y I = N I(1− t1)ε. The left-hand side is observed from the gap

in the data and the right-hand side is a function of ε and observed quantities. Thus, we

can solve for ε, and the gap in the distribution of earnings non-parametrically identifies the

elasticity. Under the isoelastic functional form assumed for the utility function, there is no

closed-form expression for the elasticity as a function of the observed objects but the

elasticity can be obtained from knowledge of the other objects by means of standard

numerical procedures. For more details, see Theorem 1 in Bertanha et al (2022c) (a result

that first appeared in the 2018 version of that paper). Note that the source of identification

is different from the one in Kleven and Waseem (2013), which uses the bunching mass

instead.

The identification strategy in the case of notches is of limited practical use in many

empirical settings. The issue is that in most applications, we can expect a portion of the

workers to be unaware of details of the tax code, or they could face cost adjustments or

other frictions that prevent them from reacting to the tax schedule. In these instances, the

income distribution will display both bunching and some “missing mass,” but no gap. The

lack of a sharp observable dominated region makes estimation based on the notch

identification strategy difficult in practice. Given the prevalence of notches examples, this

is an area where more research is needed.

2.5.2 Models with Kinks From Decreasing Tax Rates

In some settings, agents face marginal incentives that decrease at a kink point. This

would be the case if the marginal tax rate decreased for incomes greater than a given
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threshold. Bajari et al (2017) and Einav et al (2017b) study a similar problem in the

context of hospitals’ health insurance schemes. Using the notation from equation (1), we

have t1 > t2 and ∆ = (t1 − t2)K.

In this case, the solution for Y has two regimes in terms of agent type N, as opposed to

three regimes as in equation (2). Specifically, the income agents report depends on whether

they are below or above a certain threshold N,

Y =

 N(1− t1)ε , if 0 < N ≤ N

N(1− t2)ε , if N < N,
(10)

where

N = (1 + ε)K(t2 − t1)/
[
(1− t1)ε+1 − (1− t2)ε+1

]
. (11)

The distribution of Y is continuous except for an interval around the kink point where

the distribution of Y has zero mass (see Figure 7 for an example). The lower and upper

bounds of that gap can be written as nonlinear functions of observable quantities and the

elasticity. Specifically, Y = N(1− t1)ε and Y = N(1− t2)ε. Note that Y > Y because

t1 > t2.

Note, Y and Y are observable in the data—they are the beginning and the end of the

gap, that is, the region of zero mass in the distribution of Y . At the same time, we can

substitute the closed form solution for N from equation (11) into Y and Y to find two

conditions relating observables and the unknown elasticity. Taking the difference in logs of

Y and Y and diving it by the difference of logs of 1− t1 and 1− t2 yields the elasticity

(Section A.5 by Bertanha et al (2022c)). Unlike the case with a kink and increasing tax

rates, it is possible to non-parametrically identify the elasticity without having to assume

more than just continuity on the distribution of N . The difference is the gap in the

distribution, which allows for this non-parametric identification. Note, however, that this

identification strategy requires that there exist no measurement error or other frictions (see
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Figure 7: Earnings Under a Kink With Decreasing Tax Rates
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Notes: Picture generated using Y0 = (1 − t1)εN for the counterfactual income and equation (10) for the
observed income in the case of a kink from increasing tax rates. We set t1 = 0.35, t2 = 0.11, K = 3, ε = 0.5,
and assume that N is distributed as log-normal with mean 1 and variance 0.09.

Section 2.4 for a discussion of these frictions).

To further develop the intuition as to why the gap identifies the elasticity when there is

a decrease in marginal tax rates, it is useful to think of a slightly different setting. Suppose

that the policymaker was to introduce two different tax regimes based on skill levels.

Individuals with a skill level above a certain threshold N would face a lower tax rate,

whereas individuals with a skill level below N would face a higher tax rate.

If you look, however, at the solution to the worker’s problem with a negative kink on

tax rates, it is essentially the same setting. That is, a discontinuous drop in marginal tax

rates for income above a certain threshold will act as if there is a threshold level of skill N

that divides the population into two distinct groups that face different tax rates.

If we had access to data on both skill levels N and optimal income choices Y , then it

would be natural to use a Regression Discontinuity Design (RDD) strategy to obtain the

causal effect here. To begin, let’s write the equation for potential outcomes under two

distinct proportional tax regimes (note that these equations are the logs of the optimal
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choices for income under two distinct tax rates, according to the model; see Figure 8

below):

log(Yt(N)) = log(N) + ε log(1− t)

That is, if an individual that was to be faced with a marginal tax rate t would have log

income according to the equation above. Since individuals with skill above N face tax rate

t2 and individuals with skill level below N face a different (higher) tax rate t1, we have that

the observed income choices of individuals in this setting, as a function of skill N , are given

by:

log(Y (N)) =

 log(N) + ε log(1− t1) , if N ≤ N

log(N) + ε log(1− t2) , if N > N,
(12)

Or, written differently,

log(Y (N)) = log(N) + ε log(1− t1) + ε1I{N > N} log(1− t2)/(1− t1).

Note that above N , the potential income curve at marginal tax rate t1 is observed, whereas

below N , the potential income curve at a different marginal tax rate t2 is observed. The

vertical difference in height between these two curves at each and every level of ability

log(N) is precisely the causal effect of the change in taxes – from t1 to t2 – on the log of

income of individuals with skill level N . This suggests that at N , an RDD strategy could

potentially be used. Taking lateral limits above and below N , the sharp RDD estimand is

then:

lim
n↓N

E[log(Y )|N = n]− lim
n↑N

E[log(Y )|N = n] = ε(log(1− t2)− log(1− t1)).

That is, the (sharp) RDD estimand identifies the product of the elasticity by the

difference in marginal tax rates. Note also that, without optimization frictions or
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Figure 8: Income as a function of ability under distinct tax rates

Notes: Picture generated using log(Y (N)) = log(N) + ε log(1− t) for the potential income under tax rates
t1 = 0.35 and t2 = 0.11, and elasticity ε = 0.5.

measurement errors in the outcome, the conditional mean operator is not needed, since

income will be a deterministic function of ability, given the elasticity and tax parameters.

Since this difference between tax rates is known (it is essentially the size of the

“first-stage” RDD coefficient of marginal tax rates as the dependent variable and skill N as

the running variable), we can easily obtain the elasticity as:

ε =
limn↓N E[log(Y )|N = n]− limn↑N E[log(Y )|N = n]

log(1− t2)− log(1− t1)
.

If we had access to data on the pair of skill level N and income choice Y , we could use

a standard RDD strategy to recover ε, by looking at the discontinuity of income at the

threshold of skill N under which marginal tax rates change discontinuously.

It is useful to note that the magnitude of such discontinuity in the conditional mean of

income given skill around N is actually identical to the gap in the distribution of the

outcome variable (income). Thus, even when we do not have the ideal data to run this

RDD, the elasticity is still identified when there are no frictions. This comes from the fact

that the gap is identical to the intention to treat estimand from the RDD and the
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denominator is given by the known size of the change in marginal tax rates. Thus, we can

recover the elasticity since both the numerator and the denominator of the Wald ratio are

identified, even with only access to data on income and no data on the “running variable”

(ability) (see Jales and Yu (2017) for a related discussion).

Intuitively, we would like to compare individuals with arbitrarily close skill levels – so

close that they are comparable to one another–, but subject to different marginal tax rates.

In doing so, their difference in income could be attributed to differences in the responses to

the tax rates that they face. A RDD strategy would search for discontinuities in the tax

rate faced by individuals with skill levels around N . Individuals to the left of N are subject

to larger taxes, whereas individuals to the right are subject to lower taxes. In the vicinity

of N , skill levels are roughly the same, so differences in income are mostly coming from

differences in marginal tax rates.

Without data on skill, using only data on income, we can argue that with a continuous

distribution of skill, the individual with the highest income that is faced with the higher

tax rate t2 is going to have a skill level that is arbitrarily close to the skill level of the

individual with the lowest income among those that are subject to the lower tax rate t1.

Given that there is essentially no difference between their skill levels, the difference in their

income must be coming entirely from the fact that the former is making choices under a

higher marginal tax and the latter is making choices under a lower marginal tax. That is

the variation that the gap exploits to identify the elasticity.

This discussion also helps to explain why even a zero mean noise creates problems for

the identification that uses the gap. Adding random noise in Equation 12 to represent

optimization frictions would not create any issue for an RDD strategy since the RDD

estimand would be the discontinuity in the conditional expectation of log(Y ) around N .

However, if one attempts to identify the same object without data on N – that is, by

looking at the gap in the distribution of income–then any standard form of measurement

error would hide the gap from the observed distribution of income.
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Figure 9: Income as a function of ability under distinct tax rates – The case of the Kink

Notes: Picture generated using log(Y (N)) = log(N) + ε log(1− t) for the potential income under tax rates
t1 = 0.35 and t2 = 0.45, and elasticity ε = 0.5.

2.5.3 The Kink Case, Revisited

When the taxes increase above the threshold, however, the setting is slightly different.

The equations that characterize the potential income under both marginal tax rates are

still the same as before. That is, for any level of tax t, we have that

log(Yt(N)) = log(N) + ε log(1− t). However, the graph of the relationship between skill N

and income Y displays a key difference, as one can see in Figure 9.

log(Y (N)) =


log(N) + ε log(1− t1) , if N < N

log(K) , if N < N < N

log(N) + ε log(1− t2) , if N > N,

(13)

Note that even if we had access to data on the pair of skill levels N and income choices

Y , we would still need a parametric assumption (such as linearity) on the curves to identify

the vertical difference between them. This setting, in fact, would look quite a lot like a

donut type of RDD, in which the data around the threshold (here, the bunching mass) is

excluded from the analysis (Dowd, 2021) and functional form extrapolation arguments are
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usually required.

This is the case because, in contrast with the previous example, there is not a single

neighborhood of values of ability N in which we observe the individuals’ behavior under

two different tax regimes. When the tax falls after a certain value of income, then there is

a skill level N such that individuals to the left of it – but arbitrarily close to it – behave as

if they face proportional tax t2, whereas individuals to the left – but again arbitrarily close

to it – behave as if they face a proportional tax t1.

When taxes rise after a certain income level, individuals to the right of a certain skill

level N will behave as if they face a proportional tax t2, and individuals above a different

level of skill N will behave as if they face a different proportional tax level t1. A group of

individuals with skill levels between these values will simply set their income to K and, by

doing so, will not behave in the way they would behave according to either one of these

different taxes – neither t1 nor t2–, if the tax code were to be continuous.

It is useful to note that the gap allows us to see individuals with virtually the same skill

making optimal choices – interior optimal choices, the same that would prevail under a

proportional tax regime – under two different but continuous tax rates, whereas the

bunching does almost the opposite. It allows us to see individuals with the same income

but with very different skill levels. It is clear that the first kind of contrast is more

informative of the elasticity than the second. This also helps to explain why

(non-parametric) identification is possible in the presence of gaps but not when there is

only bunching.

2.5.4 Models with Notches From Lump-sum Subsidies

In some settings, agents face a lump-sum subsidy at a notch point. This would be the

case if agents received a benefit from crossing a threshold. Although this is rarely the case

in the context of taxation, this setting is quite common in the context of

pay-for-performance compensation packages, in which workers are given bonuses whenever
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they reach performance targets (see Kuhn and Yu (2021) for an example). We will,

however, continue to cast the problem in the standard setting of taxation, to ease the

comparison with the other sections in which we discuss negative notches and kinks.

In this setting, the worker faces a tax-liability function of the form

T (Y ) = tY + 1I{Y ≥ K}∆, where ∆ < 0 is the discrete decline in the worker’s tax liability

once he/she crosses the earnings threshold K. Note that once the worker crosses the

threshold earnings K, his tax liability will decrease discontinuously, creating a notch.

The solution to the worker’s optimization problem has three regimes in terms of agent

type N , as in equation (2). The difference, however, is that the gap presents itself in the

distribution of earnings below K, as opposed to above it. Figure 10 displays an example of

such a setting.

Figure 10: Earnings Under a Notch With Lump-Sum Subsidy
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Notes: Picture generated using Y0 = (1 − t1)εN for the counterfactual income and equation (2) for the
observed income in the case of a notch from a lump-sum tax benefit. We set t1 = t2 = 0.1, K = 3,
∆ = −0.05, ε = 0.2, and assume that N is distributed as log-normal with mean 1 and variance 0.09.

The underlying relationship between the worker’s ability N and the chosen level of

income Y is given by equation (2), except that now N = N I and N = K(1− t)ε, where N I

is the lowest level of ability that bunches. The ability level N I is determined by an
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indifference condition, similar to equation (3), and corresponds to income level

Y I = N I(1− t)ε.

The distribution of Y is continuous below Y I , there is a region with zero mass, or a

gap, between Y I and K, there is bunching at Y = K, and then Y is again continuous above

Y = K. The distribution of Y is observed, so the lower limit of the gap, Y I , is identified.

Using Y I = N I(1− t)ε and the implicit relationship between N I and ε allows for

non-parametric identification of ε along the same lines of Section 2.5.1. It is worth noting

that, although the elasticity is identified from the gap, the practical usefulness of such a

result is curtailed if there are adjustment costs and frictions. See the discussion in Section

2.4.

2.5.5 Models with Firms

In some settings, the agents are not individuals but firms (or something else), and thus

the model needs to be adapted. Coles et al (2022) and Agostini et al (2022) both consider

this type of setting. Here we show how the basic bunching model can be extended to firms

by discussing the setting in Agostini et al (2022). We discuss the model in Agostini et al

(2022) to demonstrate how the basic bunching model can be extended to firms.

Firms differ from individuals in that they often have negative income in a given year.

Therefore, the model for individuals in Section 2.1 that implicitly assumes income is always

positive is a bad approximation for firms.

Agostini et al (2022) begins with a two-period model where firms choose capital in

period 2, K2, to maximize shareholder value. Firms have productivity Ai and fixed costs

Fi. Profits that are net of depreciation costs in the second period are given by,

Yi(K2) =
1 + e

e
A

1/(1+e)
i K

e
1+e

2 − Fi.

Firms are subject to the tax rate t0 if their taxable income is below the kink κ and t1 if
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their taxable income is above the kink, where t0 < t1.

Firms maximize shareholder value that is given by

maxK2,i
V =K1,i −

r

1 + r
K2,i (14)

+ I(Yi(K2,i) ≤ κ)
(1− t0)Yi(K2,i)

1 + r

+ I(Yi(K2,i) > κ)
(1− t0)κ+ (1− t1)(Yi(K2,i)− κ)

1 + r
,

where I(Yi(K2,i)) and I(Yi(K2,i)) are indicator functions for taxable income being below or

above the kink and r is the discount rate.

The resulting distribution of taxable income for firms can be written in three pieces,

Y =



1+e
e
r−e(1− t0)eA− F, A ≤ A

κ, A < A < A

1+e
e
r−e(1− t1)eA− F, A ≥ A.

(15)

The thresholds are found by setting the optimal taxable income equal to the kink κ with

both tax rates: A = (κ+ F )/(1− t0), and A = (κ+ F )/(1− t1).

The distribution of firms features bunching at the kink due to the discontinuous

incentives created by the tax rate increase at the kink. If the kink is at a positive income

level, then the methods described in Section 2.3 can be used to recover the elasticity of

taxable income for firms. However, Agostini et al (2022) consider the kink at $0, where

firms’ statutory tax rates typically change from zero to positive. The models in Section 2.1

do not cover this case, therefore, to recover the elasticity, that paper develops two methods

building on the methods in Section 2.3.
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2.5.6 Models With a Notch and Without Knowledge of the Budget Constraint

In some settings, the budget constraint parameters are unknown and are often the

parameters of interest. A typical question in this area is the size of a given notch

(Bertanha et al, 2022a). Another example is Ewens et al (2021b), which estimates the cost

of disclosure and governance regulations using a threshold based on a firm’s level of equity.

This type of question is common in finance and accounting settings, where due to a

threshold, there is bunching in the observed distribution, and the object of interest is the

change in incentives causing that behavior.

The approach taken by Ewens et al (2021b) is to use a model that has been previously

calibrated from the literature. Then, by combining this model and bunching methods, the

costs of regulation can be recovered. Specifically, their model consists of a set of firms

choosing equity Y subject to a regulation that imposes a cost of t if their equity is greater

than some threshold K. In the absence of the regulations, firms would choose Y ∗, and firms

bear a cost for the deviation of equity from its level without the regulation according to the

penalty function Φ(Y ;Y ∗). The objective of the firm is to maximize,

maxY − Φ(Y ;Y ∗)− tI(Y > K). (16)

There is a marginal firm that is indifferent between bunching Y = K and setting their

equity to be what it would have been in the absence of the notch Y = Y ∗. The change in

equity for this marginal firm can be recovered using bunching methods; then it can be used

to calculate the regulatory costs given the indifference condition for the marginal firm,

t = Φ(K;Y ∗). (17)

Ewens et al (2021b) approach works well if the other parameters, for example, the penalty

function, are known from the literature. Bertanha et al (2022a) take a different route and
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do not assume that these parameters are known. Instead, Bertanha et al (2022a) build on

the methods in Section 2.3 to provide estimates of the size of the notch.

2.5.7 Models With Multiple Kinks

In some settings there exist multiple kinks, perhaps across years, that can be used to

isolate the parameters of interest. Denning et al (2023) provide an example in the context

of student loans. Specifically, students are subject to a discontinuity in their interest rates

based on how much debt they take out because they exhaust subsidized loans with lower

interest rates. In their case, they observe changes in the interest rates across years and use

this additional variation to estimate an elasticity and a misperception parameter that

affects the perceived interest rate change.

Following Denning et al (2023), consider a two-period model where individuals choose

how large of a loan L to take out. Individuals are heterogeneous in their utility preferences

over debt, parameterized by N. They have exogenous income in both periods, Y1 and Y2,

which they use to buy consumption in periods 1 and 2, C1 and C2 respectively, with a

discount factor β. The interest rate that individuals face depends in part on how large of a

loan they take out. Specifically, for L < K, the interest rate is r1, and for L > K, the

interest rate is r1 for the first K amount and r2 afterward. Individuals, however, may

misperceive the interest rate for large loans to differ from r2 by a factor θ.

Individuals choose L to maximize their utility over two periods by solving the problem

max
L

C1 + βC2 −
N

1 + 1/ε

(
L

N

)1+ 1
ε

s.t.

C1 = Y1 + L

C2 = Y2 − I{L ≤ K}(1 + r1)L− I{L > K} [(1 + θr2)L− (r2 − r1)K] .

The first-order condition determines each individual’s loan amount as a function of their
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heterogeneous parameter N, the elasticity ε that determines the utility cost of the loan,

and other parameters:

L =


N (1− β(1 + r1))ε , if N < K (1− β(1 + r1))−ε

K, if N ∈ [K (1− β(1 + r1))−ε , K (1− β(1 + r2))−ε]

N (1− β(1 + θr2))ε , if N > K (1− β(1 + θr2))−ε .

The methods discussed in Section 2.3 recover εs0 and εs1. In the typical case, s0 and s1

are observed and the elasticity can be recovered. In this case, the misperception parameter

θ can be recovered by taking the ratio of the estimates. The elasticity in the numerator

and denominator cancels out, thus identifying the misperception parameter as the ratio of

the observed interest rates.

2.5.8 Future Work

This subsection discusses additional directions for extensions, noting that our list is far

from exhaustive. Many extensions will require bespoke models to capture key features of

the novel setting. For example, Einav et al (2017b) develop a model in the context of

prescription drug insurance for the elderly in Medicare Part D and Agostini et al (2022)

develop methods to focus on a kink in the corporate tax schedule at zero. The addition of

a model and structure in these cases provide researchers with additional tools to estimate

model parameters and perform policy experiments. We find extensions in this style to be

extremely fruitful for policy-relevant research.

Three areas that have received attention are the extensive margin, dynamic effects, and

decomposing elasticities into different components. Gelber et al (2021) extend the basic

model to include fixed costs of having positive earnings. Their setting is the nonlinear

incentives in Social Security created by the Annual Earnings Test that effectively creates a

kink with a marginal tax rate above the exempt amount. The inclusion of these fixed costs

creates the possibility of an extensive margin response where individuals respond to the
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kink by reducing their earnings to zero. Gelber et al (2021) find the extensive margin is

empirically important as their employment elasticity is relatively large, 0.49 in the full

sample, and for several reasons is likely a lower bound. Pollinger (2021) allows agents to

choose the amount of wattage of solar panels (the intensive margin) and participation in

the subsidy program (the extensive margin). Identification in this case relies on a local

analytic function building on results in Goff (2022); for example, see Proposition 6.

Le Maire and Schjerning (2013) and Marx (2022) extend bunching methods to consider

dynamic effects. Le Maire and Schjerning (2013) derive a bunching formula from a

dynamic model of income shifting in the context of self-employed workers in Denmark.

Their model allows them to estimate that 50-70% of observed bunching is due to income

shifting. To put this in context, the elasticity of taxable income estimate from the static

model is between 0.43 and 0.53 and with the dynamic model is between 0.14 and 0.20.

Marx (2022) similarly extends the static model to a dynamic setting to show how serial

dependence in choice variables can bias static-model estimates. This work also considers

extensive margin responses, heterogeneous treatment effects, and long-run effects.

Hamilton (2018), Le Maire and Schjerning (2013), and Coles et al (2022) extend

bunching methods to decompose bunching into different components to help understand

how agents respond to incentives. Hamilton (2018) separately considers the components of

taxable income and finds that two-thirds of the response is due to changes in gross income,

and one-third of the response is due to changes in deductions. Coles et al (2022) use panel

data and a basic assumption of how revenues and costs co-move to decompose their

elasticity of corporate taxable income estimate into economic responses and tax-motivated

accounting transactions. They find that in response to a 10% increase in the expected

marginal tax rate, firms decrease taxable income by 6.1% from accounting transactions

(e.g., revenue and expense timing) and 3.0% from economic responses (e.g., scaling

operations). Velayudhan (2018) uses a VAT notch where small firms are not required to

file. This paper then considers how the distribution of firms would look like if the bunching
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was caused by real production changes or misreporting.

In many contexts, the researcher may be interested in the nonlinear incentive structure.

For example, Burgstahler and Dichev (1997) note that firms avoid negative earnings and

therefore, there is excess mass just above zero. Ewens et al (2021b) and Bertanha et al

(2022a) are developing methods to estimate the nonlinear incentives that exist for firms (or

managers) that induce this level of excess mass. The key hurdles in this work include how

to (1) integrate frictions into the model, (2) differentiate kinks, notches, or both, (3)

account for agent responsiveness, and (4) identify the change in incentives in light of the

impossibility result discussed in Section 2.2.3.

Hong (2023) extends the basic model with a single elasticity to a model with a

distribution of elasticities. The paper estimates this distribution in the setting of medical

expenditures in South Korea. It exploits variation from a control group to recover the

conditional cumulative distribution below a certain elasticity. This extension allows the

paper to provide more realistic counterfactual policy simulations. In this setting, Hong

(2023) finds that patient welfare can be improved by replacing a notch with a linear rate

structure.

Goff (2022) provides a generalization of current methods that captures bunching with

multiple-choice variables. The key insight in this work is to recast the parameter of interest

as a choice of counterfactuals rather than a preference parameter. Through this extension,

Goff (2022) shows that the bunching design is more general than the typical isoelastic

model typically employed. This work extends some of the earliest work, including Saez

(2010) and Kleven (2016), which discusses a generalization with heterogeneous elasticities.

See, for example, Lemma SMALL in Goff (2022), which explores the usefulness of a

“small-kink” approximation. Finally, Blomquist et al (2015) explore quasi-concave models

without a parametric form.

In some contexts estimating an elasticity may not be necessary to provide

policy-relevant insights. Moore (2022) shows that the bunching mass can be used as a
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sufficient statistic for the revenue effect of behavioral responses to small changes of the

threshold without making assumptions necessary to identify an elasticity. Goff (2022)

shows the effect of a marginal change in the threshold on bunching as well as on mean

counterfactual choices are also point identified without any extrapolation assumptions.

Future work can apply these methods to provide policy-relevant estimates and extend these

methods to different types of policy changes.

Many parameters of interest can be identified using observed distributions and

nonlinear budget constraints, incentives, or tax schedules. The bunching field is still full of

examples where bunching in a variable has not yet been explored in applications. The menu

of assumptions and data structures discussed in the previous sections offers some guidance

about how one might approach a problem where bunching in the outcome variable is found

and what can be identified in such a setting. The several applications in this section give a

map of areas where the frontier is being pushed forward, where much is yet unknown.

3 Bunching in the Treatment Variable and the

Smoking Example

A new branch of the literature focuses on how bunching in the treatment variable can

be leveraged to test or correct for endogeneity in reduced-form causal models. The

methods leverage the insight, first brought up in Caetano (2015), that the bunched

observations tend to be discontinuously different in comparison with the observations near

the bunching point. Thus, for instance, consider the variable “average number of cigarettes

per day among pregnant women,” which has a bunching of 80% of the sample at zero.

Figures 11 and Figure 12 show that mothers who do not smoke in pregnancy have a

discontinuously higher education, and are discontinuously more likely to be married in

comparison with mothers who smoke any positive amount. Since the discontinuous

patterns in these figures are the standard among all the observable mother, father and
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pregnancy characteristics which are correlated with smoking, it is expected that a similar

pattern exists among the unobservable variables that are correlated with smoking.

Mother’s demographic characteristics.

Figure 11: Education (years)
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Figures 11 and 12: Dots represent average values referring to the pregnant mothers for each level of
daily cigarette consumption. The vertical lines represent the 95% confidence interval of the mean. Source:
Caetano (2015), p. 1592.

3.1 Testing Identification Assumptions

Define Yi(t) as the potential outcome of observation i under treatment level t, and let Ti

denote observation i’s actual treatment. Suppose that Yi(t) is differentiable with respect to

t, and denote its derivative Y ′i (t). For a given vector of controls Xi, define

Ti is exogenous ⇐⇒ Ti ⊥⊥ Yi(t)|Xi.

If Ti is exogenous, then the average conditional marginal treatment effect function

E[Y ′i (t)|Ti = t,Xi] = dE[Yi|Ti = t,Xi]/dt can be identified. Estimation of the treatment

effects depends on assumptions on E[Yi|Ti = t,Xi], as there are a wide range of options

available in the selection-on-observables literature. For example, if E[Yi|Ti = t,Xi] is

assumed to be linear on Ti and Xi, then the marginal treatment effect estimator is simply

the coefficient of Ti on a regression of Yi on Ti and Xi. A researcher interested in using

such methods would therefore like to test if Ti is exogenous.
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Caetano (2015) showed that, if the distribution of Ti has bunching at Ti = t̄, it is

possible to test the exogeneity of Ti. When one compares the outcome of observations at

the bunching point and those around it, the treatment itself is very similar. Therefore,

there cannot be more than a marginal difference in the outcome that is due to treatment

variation, since the treatment hardly varies. Any discontinuity in the outcome (conditional

on controls) at the bunching point must be due to one of two reasons. First, the treatment

effect may be discontinuous at the bunching point. Second, there may be discontinuous

selection on unobservables, that is, the distribution of the unobservable confounders is

discontinuous at the bunching point (and therefore Ti is endogenous). If one can assume

that Yi(t) is continuous in t at t̄ with probability one conditional on Xi, then the first

possibility is ruled out. One can then test the exogeneity of Ti by checking if

E[Yi|Ti = t,Xi] = is continuous in t at t̄. This is because, if Ti is exogenous, then

E[Yi|Ti = t,Xi] = E[Yi(t)|Ti = t,Xi] = E[Yi(t)|Xi] must be continuous in t at t̄.

We translate the idea above to the smoking example. If the expected birth weight given

the amount of smoking and controls is discontinuous at zero cigarettes, then either

cigarettes have a discontinuous causal effect on birth weight, or unobservables are

discontinuously different among those who do not smoke and those who smoke a

marginally small amount. If we believe that marginal amounts of smoking have a marginal

effect on birth weight, then the birth weight of those who do not smoke should be at most

marginally different from the birth weight of those who smoke a very small amount. If the

difference in birth weight is large, then the only possible explanation is differences in

unobservables. This explanation implies that smoking is endogenous since, in that case, the

unobservables of those who do not smoke are different from the unobservables of those who

smoke a marginally small amount. This implies that, if the effect of smoking on birth

weight is continuous at zero cigarettes, then the expected birth weight given the number of

cigarettes and controls must be continuous at zero cigarettes.

This test makes sense when Ti has bunching because, as discussed above, confounders
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tend to be discontinuously different at the bunching point. Specifically, if Ti is endogenous

and has bunching at t̄, then Yi(t)|Ti = t,Xi will usually be discontinuous in t at t̄.

Therefore, if Ti is endogenous, E[Yi|Ti = t,Xi] will usually be discontinuous in t at t̄.

Summarizing, if Ti is exogenous, then E[Yi|Ti = t,Xi] is continuous in t at t = t̄ and, if Ti

is endogenous and has bunching at Ti = t̄, E[Yi|Ti = t,Xi] is usually discontinuous in t at

t = t̄. We can thus test if Ti is endogenous by checking if E[Yi|Ti = t,Xi] is discontinuous

in t at t = t̄.

To implement this non-parametric test, the dimension of Xi is a concern. Caetano

(2015) proposes aggregating the discontinuities across values of Xi, and testing instead if

an average of the discontinuities is different from zero. A convenient aggregation explored

in that paper yields the following testing quantity:

θ = lim
t↓t̄

E [E[Yi|Ti = t̄, Xi]− Yi|Ti = t] .

This strategy is particularly convenient when there is a large amount of bunching at t̄, as is

the case with smoking. Estimation can be done in a two step process: (1) estimate

E[Yi|Ti = t̄, Xi] non-parametrically (or, in practice, as non-parametrically as possible, using

machine learning strategies or a kitchen sink regression) and (2) do a local linear regression

of Ê[Yi|Ti = t̄, Xi]− Yi onto Ti at t̄, using only observations such that Ti > t̄. The approach

just described is known as the Discontinuity Test. See empirical implementations in

Caetano (2015), Rozenas et al (2017), Erhardt (2017), Pang (2018), Bleemer (2018), and

Bleemer (2020).

More recent papers in this literature have implemented a much simpler approach, first

introduced in Caetano and Maheshri (2018), and studied in Caetano et al (2021a), which is

known as the Dummy Test. This test is suitable to cases where some semi-parametric

assumptions on Yi(t) are made, and estimation takes these into account. For example,

suppose that Yi(t) = βt+Ui, where Ui is not observed, and one intends to estimate β as the
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coefficient of Ti in a regression of Yi onto Ti and Xi. In this case, the main identification

assumption is that E[Ui|Ti, Xi] = X ′iα, which implies that Yi = βTi +X ′iα + Ui, a standard

linear model. The setting in this example includes difference-in-differences approaches

which are estimated using linear regressions with fixed effects, which is a popular empirical

design for causal inference (this is because Xi can include fixed effects). The Dummy Test

consists of adding the dummy 1(Ti = t̄) to the regression (i.e. regress Yi onto Ti, Xi and

1(Ti = t̄)) and implementing a simple t-test that the coefficient of 1(Ti = t̄) is significant.

The Dummy Test operates under the same principles as the Discontinuity Test, in

leveraging the idea that, if Ti has bunching and is endogenous, the distribution of

Ui|Ti = t,Xi is likely to be discontinuous in t at t̄. This would then generate a discontinuity

in E[Yi|Ti = t,Xi] at the bunching point, which can be detected by including the dummy

1(Ti = t̄) in the regression. While the Discontinuity Test tests exclusively the exogeneity of

Ti, the Dummy Test is a joint test of the exogeneity of Ti and the assumed functional form,

and is generally more powerful. Implementations of the Dummy test in applied work can

be seen in Caetano and Maheshri (2018), Ferreira et al (2018), Lavetti and Schmutte

(2018), De Vito et al (2019), Caetano et al (2019), Kaneko and Noguchi (2020), Caetano

et al (2021b), Jürges and Khanam (2021), Hussein (2021), and Fe and Sanfelice (2022). A

similar dummy strategy can be implemented in other semi-parametric models that are

popular in empirical research, including nonlinear regression models estimated with GMM,

and discrete-choice models. In all these cases, the main identification assumptions can be

tested by including 1(Ti = t̄) in the set of controls and performing a simple t-test of the

significance of its coefficient.

Similar ideas are leveraged in Khalil and Yıldız (2019) to build a test of the exogeneity

of Ti in a model where the treatment variable does not have bunching (and may, in fact, be

binary), but one of the control variables does. Furthermore, Caetano et al (2016) showed

that bunching on the treatment variable can be used to test the validity of the

instrumental variable in a triangular model.
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3.2 Identifying Treatment Effects

In the general model discussed in the previous section, all observations at the bunching

point have the same treatment. After controlling for observables, any variation in the

outcomes of those observations must be due to the unobservables. Therefore, bunching

provides a glimpse into the effects of confounder variation without contamination from the

treatment variation. With some additional structure, it may be possible to use the variation

at the bunching point to correct estimators so that they are consistent under endogeneity.

The available strategies in the literature focus on bunching at a corner of the

distribution of the treatment, which is the most common form of bunching. This is because

there is often bunching at zero for variables that cannot be negative, as is the case with

smoking, drinking, consuming coffee, almost all types of time use (e.g. exercising,

studying), financial variables like debt, savings, specific types of investments, etc. Often

law and other artificial restrictions generate this type of bunching, for example minimum

wage, schooling, age to work laws, maximum 401K and Roth IRA contributions etc. For

simplicity of notation, suppose that t̄ = 0 and is the lower extreme, so that Ti ≥ 0. The

main structural restriction in the methods discussed below is that observations at the

bunching point can be ordered. This is parameterized by a latent variable T ∗i , as

Ti = T ∗i · 1(T ∗i ≥ 0), where P (T ∗i < 0) > 0.

Although the approaches discussed below are agnostic about the structural interpretation

of T ∗i , it is useful to think of this variable as the optimal choice in an unconstrained

optimization problem. For example, in the maternal smoking example, we can suppose

that the number of cigarettes Ti is decided as the result of a constrained optimization

problem, where mothers maximize a utility function which takes into account her

preferences, as well as her observable and unobservable characteristics, subject to any

budget and other standard constraints, and additionally a constraint that Ti must not be
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negative. Then, T ∗i is the result of the optimization when the non-negativity constraint is

lifted. In other words, T ∗i is the optimal choice the mother would have made if she took

into account all factors of concern in her decision except the fact that one cannot smoke

negative amounts. If the maximization yields T ∗i ≥ 0, then she smokes that number, and

thus Ti = T ∗i . If the maximization yields a negative number, then she smokes Ti = 0.

If conceiving of a negative amount of smoking is difficult, one can think of T ∗i as an

ordinal index of the amount of indifference between smoking versus not smoking among the

mothers when all factors are taken into account, including budget constraints. Therefore, a

mother with T ∗i = −2 is closer to indifference between smoking versus not smoking than a

mother with T ∗i = −3. Both mothers prefer not to smoke, but the latter mother would

have to be paid more to smoke the first cigarette than the former mother. The condition

P (T ∗i < 0) > 0 means that there are mothers who are not indifferent, and strictly prefer

not smoking to smoking any amount.

Caetano et al (2020) consider the model

Yi(t) = βt+ Ui,

where

E[Ui|T ∗i , Xi] = δT ∗i +X ′iα.

In this model, Ti and Ui are correlated, and therefore Xi is endogenous. However, the same

relationship between Ti and Ui when Ti > 0 is also maintained between T ∗i and Ui when

Ti = 0 (i.e. δ is the same for all values of T ∗i ). This model states that, in the same way that

Ti must be the index of all confounded variation for Ti > 0, T ∗i indexes all confounded

variation in the bunching point. This structure implies

E[Yi|Ti, Xi] = βTi +X ′iα + δ(Ti + E[T ∗i |T ∗i ≤ 0, Xi]1(Ti = 0)).
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Although it is not possible to separate β and δ from the variation of Ti, the discontinuity of

E[Yi|Ti, Xi] at Ti = 0 generated by the bunching reveals only the magnitude of δ, which can

then be used to disentangle β. In other words, if it were feasible to estimate

E[T ∗i |T ∗i ≤ 0, Xi], then Ti + Ê[T ∗i |T ∗i ≤ 0, Xi]1(Ti = 0) could be added to the regression to

correct for the endogeneity of Ti, in the sense that the coefficient of Ti in a regression of Yi

onto Ti, Xi and the “correction term” Ti + Ê[T ∗i |T ∗i ≤ 0, Xi]1(Ti = 0) is a consistent

estimator of β.

The same type of strategy can be used in other, more general, models also considered in

Caetano et al (2020). See, for example, Caetano et al (2023), which implements a model

with parametric and non-parametric correlated random effects to study the effect of the

hours the mother works on the child’s skills. This paper showcases one of the main

advantages of leveraging bunching for identification instead of instrumental variables, in

that the correction method is not prone to weak identification, and thus allows the division

of the sample into subgroups to study heterogeneity. Caetano et al (2023) use this property

to study heterogeneity of maternal labor supply effects by the mother’s skills and pre-birth

income. Another example can be seen in Caetano et al (2021b).

Caetano et al (2020) propose identifying E[T ∗i |T ∗i ≤ 0, Xi] using models on the shape of

the conditional distribution of T ∗i . For example, if T ∗i |Xi ∼ N (µ(Xi), σ
2(Xi)), for arbitrary

functions µ and σ, then E[T ∗i |T ∗i ≤ 0, Xi] = µ(Xi)−σ(Xi)
2 ·λ(−µ(Xi)/σ(Xi)), where λ(·) is

the inverse Mills ratio (the PDF divided by the CDF of the standard normal distribution).

A weaker assumption than normality is tail symmetry. If the distribution of T ∗i |Xi is

symmetric in the tails and P (Ti = 0|Xi) ≤ 0.5, then E[T ∗i |T ∗i ≤ 0, Xi] = F−1
i (1− Fi(0))

−E[Ti|Ti ≥ F−1
i (1− Fi(0)), Xi], where Fi(t) = P (Ti ≤ t|Xi).

All the quantities in the two cases above can be identified, and may be estimated with

standard non-parametric methods, but Caetano et al (2020) propose a simpler empirical

strategy in two steps: (1) discretize the Xi using hierarchical clustering (Hastie et al

(2009)), and (2) do the estimation within each cluster under the assumption that, for all i
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in cluster Ci = c, E[T ∗i |T ∗i ≤ 0, Xi] = E[T ∗i |T ∗i ≤ 0, Ci = c] (i.e. assume that the

expectation is the same for all observations within the cluster). In the normality case, the

second step is equivalent to running a Tobit regression on a constant within each cluster c.

The estimator of the constant is µ̂(Xi) for all i such that Ci = c, and the estimator of the

standard deviation is σ̂(Xi). Analogously, in the tail symmetry case, for all i such that

Ci = c, one would estimate Fi(0) as the probability of bunching among observations in

cluster c, F−1
i (q) as the quantile q of Ti among all observations in cluster c, and

E[Ti|Ti ≥ a,Xi] as the mean of the Ti ≥ a among all observations in cluster c.

Caetano et al (2022b) considers partial identification strategies when the assumptions

on the distribution of T ∗i |Xi are relaxed. They show that a sharp bound on β can be

obtained under no distributional assumption. An opposite sharp bound can be obtained

under mild assumptions such as that, for t ≤ 0, the density of T ∗i |Xi, fT ∗|X(t), has no peaks

larger than the right limit of the density of Ti|Xi at the bunching point. Bounds can be

narrowed if assumptions on fT ∗|X(t) for t ≤ 0 are strengthened, such as assuming concavity

or convexity, both of which are testable conditions, or that fT ∗|X belongs to families such

as bi-log concave or log concave. These bounds are easy to calculate, and may be visually

displayed in a compelling manner. For example, the plots in Caetano et al (2023) show

that all the points in that paper stand even if no assumption is made on the distribution of

T ∗i |Xi.

3.3 Future Work

Recently, Caetano et al (2022a) showed that it is possible to obtain non-parametric

identification of treatment effects using bunching. Specifically, they show that

E[Y ′i (0)|T ∗i = 0], the average marginal treatment effect at the bunching point for the

population with T ∗i = 0, can be identified if (1) the treatment effects are continuously

differentiable at the bunching point; (2) the endogenous selection as a function of T ∗i

(Yi(0)|T ∗i = t) is continuously differentiable at the bunching point; (3) the endogeneity bias
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is monotonic on T ∗i for T ∗i ≤ 0; and (4) the distribution of the idiosyncratic variation

conditional on T ∗i (Yi − E[Yi|T ∗i ]) is right-continuous at the bunching point and

independent of T ∗i at the bunching point. Identification is obtained by an innovative use of

the change of variables theorem. They show that the bias of endogeneity for T ∗i = 0 can be

written as the ratio of limt↓0 fT |X(t) and the density of the selection bias term evaluated at

T ∗i = 0. The latter term can be identified through the distribution of the outcome at the

bunching point: at the bunching point, any variation in outcome is due to the variation in

Yi(0). The density of the selection can be deconvoluted from the density of the

idiosyncratic noise term using the observations near the bunching point.

The advancements in Caetano et al (2022a) show that the potential of bunching as a

source of identification is very promising. There is ample opportunity of contribution in the

search for bunching identification strategies with weaker assumptions. Moreover, much

remains to be done with regards to estimation of these models. For example, the use of

clustering as a technique for bringing non-parametric flexibility to the standard models

needs to be further studied. Additionally, the estimation in the non-parametric

identification strategy in Caetano et al (2022a) uses limit deconvolution estimators which

need to be studied, and may perhaps be improved or altogether avoided.

4 Summary

In this chapter, we review the literature on bunching methods. We discuss the limits of

non-parametric identification of taxable earnings elasticity under continuity assumptions in

the settings of kinks and notches. We also examine what can be identified when point

identification is not feasible under general continuity conditions, such as in the case of

standard convex kinks. We provide practical guidance for the applied econometrician,

discuss how to implement these procedures using canned packages in Stata, and suggest

directions for future work.
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We also provide the first review of another growing branch of this literature that

leverages bunching in the treatment variable in standard reduced-form causal models. We

discuss how bunching in the treatment variable makes it possible to test for endogeneity

and to correct for endogeneity without instrumental variables or panel data.
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